Variations of intracellular density during the cell cycle arise from tip-growth regulation in fission yeast

  1. Pascal D Odermatt
  2. Teemu P Miettinen
  3. Joel Lemiere
  4. Joon Ho Kang
  5. Emrah Bostan
  6. Scott R Manalis
  7. Kerwyn Casey Huang
  8. Fred Chang  Is a corresponding author
  1. UCSF, United States
  2. Massachusetts Institute of Technology, United States
  3. Korea Institute of Science and Technology, Republic of Korea
  4. University of Amsterdam, Netherlands
  5. Stanford University, United States

Abstract

Intracellular density impacts the physical nature of the cytoplasm and can globally affect cellular processes, yet density regulation remains poorly understood. Here, using a new quantitative phase imaging method, we determined that dry-mass density in fission yeast is maintained in a narrow distribution and exhibits homeostatic behavior. However, density varied during the cell cycle, decreasing during G2, increasing in mitosis and cytokinesis, and dropping rapidly at cell birth. These density variations were explained by a constant rate of biomass synthesis, coupled to slowdown of volume growth during cell division and rapid expansion post-cytokinesis. Arrest at specific cell-cycle stages exacerbated density changes. Spatially heterogeneous patterns of density suggested links between density regulation, tip growth, and intracellular osmotic pressure. Our results demonstrate that systematic density variations during the cell cycle are predominantly due to modulation of volume expansion, and reveal functional consequences of density gradients and cell-cycle arrests.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Custom Matlab code used for image analysis has been posted online at the Github repository https://bitbucket.org/kchuanglab/quantitative-phase-imaging/src/master/.

Article and author information

Author details

  1. Pascal D Odermatt

    Department of Cell and Tissue Biology, UCSF, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Teemu P Miettinen

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5975-200X
  3. Joel Lemiere

    Department of Cell and Tissue Biology, UCSF, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joon Ho Kang

    Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4165-7538
  5. Emrah Bostan

    Informatics Institute, University of Amsterdam, Amsterdamn, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Scott R Manalis

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kerwyn Casey Huang

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8043-8138
  8. Fred Chang

    Department of Cell and Tissue Biology, UCSF, San Francisco, United States
    For correspondence
    fred.chang@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8907-3286

Funding

Swiss National Foundation (P2ELP3_172318)

  • Pascal D Odermatt

Swiss National Foundation (P400PB_180872)

  • Pascal D Odermatt

National Institute of General Medical Sciences (NIH GM056836)

  • Fred Chang

Wellcome Trust (110275/Z/15/Z)

  • Teemu P Miettinen

Chan Zuckerberg Initiative

  • Kerwyn Casey Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Odermatt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,706
    views
  • 367
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pascal D Odermatt
  2. Teemu P Miettinen
  3. Joel Lemiere
  4. Joon Ho Kang
  5. Emrah Bostan
  6. Scott R Manalis
  7. Kerwyn Casey Huang
  8. Fred Chang
(2021)
Variations of intracellular density during the cell cycle arise from tip-growth regulation in fission yeast
eLife 10:e64901.
https://doi.org/10.7554/eLife.64901

Share this article

https://doi.org/10.7554/eLife.64901

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.