Tissue-autonomous immune response regulates stress signaling during hypertrophy

  1. Robert Krautz  Is a corresponding author
  2. Dilan Khalili
  3. Ulrich Theopold  Is a corresponding author
  1. Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Sweden
13 figures, 1 table and 4 additional files

Figures

Figure 1 with 1 supplement
RasV12-induced hypertrophy induces local and cellular immune responses.

(A) RasV12-glands and controls stained with Phalloidin (red) to monitor tissue integrity at 96 hr and 120 hr after egg deposition (AED). (B) Nuclei stained with DAPI (white) to visualize nuclear …

Figure 1—figure supplement 1
Homeostasis, local and cellular immune responses separate along the longitudinal axis of RasV12-glands.

(A) Right: Schematic representation of deployed algorithm to measure fluorescene signals along all vertical axis perpendicular to the glands longitudinal axis. Left: mCD8::RFP;;RasV12- and mCD8::RFP-…

Figure 2 with 3 supplements
Drs expression is part of a genuine tissue-autonomous immune response.

(A) Semi quantitative DrsGFP reporter assay to identify upstream effectors of Drs expression by RNAi in RasV12-glands. Schematic representation (left) of the Toll-/imd-pathways showing components …

Figure 2—figure supplement 1
Drs expressed in a bona fide, tissue-autonomous, RasV12-dependent manner.

Larvae with RasV12-glands and DrsGFP reporter (green). (A) raised on plates with standard potatomash/molasses medium including stringent antibiotics cocktail, (A’) transferred immediately after …

Figure 2—figure supplement 2
Drs expression in RasV12-glands is dorsal-dependent.

(A) DrsGFP reporter assay with RNAi constructs against Caudal and Drifter in RasV12-glands. Sketched phenotypes (right) were scored, their mean and standard deviations plotted. Dunn’s test performed …

Figure 2—figure supplement 3
Mef2 contributes to Drs expression in RasV12-glands.

(A) Effect sizes of dlRNAi-knock-down on Drs-expression in proximal part (PP) and distal part (DP) compartments of and compared to RasV12-glands at 96 and 120 hr after egg deposition (AED). Mean of …

Figure 3 with 2 supplements
Hypertrophic RasV12-glands induce parallel immune and stress responses.

(A) Common and specific genesets significantly upregulated (log2(beta) ≥1; q-value ≤0.05) in either RasV12, lglRNAi;RasV12, or lglRNAi;RasV12-PP compared to w1118-glands. (B) PCA including all …

Figure 3—figure supplement 1
Drs is the only AMP detected to be expressed in the distal part of RasV12-glands until 96 hr.

(A) Schematic overview of protocol for preparing tissues analyzed by RNAseq. (B) Comparative GO term enrichment analysis for genes significantly upregulated in either RasV12- or lglRNAi;RasV12-glands…

Figure 3—figure supplement 2
JNK-signaling is predominantly activated in the distal part of RasV12-glands.

(A) Gene expression for canonical target genes measured by qPCR (log2-transformed, fold-change over Rpl32). Lower/upper hinges of boxplots indicate 1st/3rd quartiles, whisker lengths equal 1.5*IQR …

Figure 4 with 1 supplement
Drs overexpression and JNK inhibition individually prevent tissue disintegration.

(A) Drs-specific in-situ hybridization identifies endogenous (RasV12, jnkDN;;RasV12) and exogenous (Drs, Drs,RasV12) Drs expression. (B) Collagen-GFP trap (vkgG00454, green) and Hemese staining …

Figure 4—figure supplement 1
Hemocyte recruitment requires JNK-dependent Mmp2 expression.

(A) SG size as measured by outlining images of the 120 hr-old, experimental and control glands with the indicated genotypes. Lower/upper hinges of boxplots indicate 1st/3rd quartiles, whisker …

Figure 5 with 3 supplements
Drs overexpression inhibits JNK-activation.

(A) Schematic representation of the JNK-pathway including read-outs (green) employed to track its activation. (B) qPCR results for canonical JNK-target genes (log2-transformed, fold-change over Rpl32

Figure 5—figure supplement 1
JNK-signaling does not regulkate Drs expression.

(A) DrsGFP reporter (green) and Hemese antibody (red) used to detect endogenous Drs expression and attached hemocytes. Scalebar indicates 100 µm. (B) Expression of Drs and JNK-target genes as …

Figure 5—figure supplement 2
Drs levels determine JNK-activation.

(A) Effect size of Drs-knock-down on Drs-expression in RasV12-glands. Mean RasV12-expression was set to ‘1’ separately at 96 hr and 120 hr after egg deposition (AED). (B) ISH with Drs-probe in RasV12

Figure 5—figure supplement 3
Overexpression of Drs is specific in its effect on JNK-signaling.

(A) Expression values for Drs and JNK target genes as determined by qPCR for RasV12-glands coexpressing either Drs or mCD8::RFP as an UAS-dilution control at 96 hr and 120 hr after egg deposition …

Figure 6 with 1 supplement
Drs inhibits programmed cell death.

(A) Hid expression as measured by qPCR and plotted as log2-transformed values normalized to Rpl32-expression in RasV12-glands with in- (Drs) or decreased (DrsRNAi) Drs expression. (B) Schematic …

Figure 6—figure supplement 1
Drs inhibits programmed cell death via hid and Dronc.

(A–B) Quantifications and prototypical examples of RasV12-glands with in- (Drs) or decreased (DrsRNAi) Drs expression stained for activated Dronc (red) via the CC3-antibody, JNK-dependent …

Figure 7 with 1 supplement
Drs inhibits the JNK-feedback loop.

(A) Schematic representation of the JNK-feedback loop including levels of interference (blue) and used read-outs of its activity (green). hid-overexpressing glands with or without coexpressed Drs …

Figure 7—figure supplement 1
Dronc-reduction blocks the JNK-feedback loop in RasV12-glands.

(A) RasV12-glands with or without Dronc-knock-down were stained for activated jnk with a phosphorylation sensitive antibody at 120 hr after egg deposition (AED) and (B) the signal was quantified per …

Tissue-autonomous antagonizes cellular immune response via JNK-inhibition in RasV12-glands .

dl-mediated Drs expression inhibits JNK activation in the entire RasV12-gland until 96 hr after egg deposition (AED). At 120 hr AED, dl and thus Drs expression is reduced to the PP, derepressing …

Author response image 1
RasV12-glands show intrinsic anterior-posterior separation.

(A) Right: Schematic representation of deployed algorithm to measure fluorescene signals along all vertical axis perpendicular to the glands longitudinal axis. Left: mCD8::RFP;;RasV12- and mCD8::RFP

Author response image 2
Drs asserts specific function on JNK-signaling not mimicked by other detected AMPs.

(A) SG size as measured by outlining images of the 120 h-old, experimental and control glands with the indicated genotypes. (B) Quantified CC3-staining in RasV12-glands with coexpressed Drs or …

Author response image 3
Apart from dorsal Drs is putatively regulated by Mef2.

(A) Effect sizes of dlRNAi-knock-down on Drs-expression in PP- and DP-compartments of and compared to RasV12-glands at 96 and 120 h AED. Mean of Drs-expression in RasV12-glands was set to “1”. …

Author response image 4
Mmp2 expression necessary for hemocyte attachment to the surface of RasV12-glands.

(A) Hemocyte attachment at 120 h AED in RasV12-glands hetero- and homozygous mutant for Mmp2 (Mmp2k00604). (B) Effect size of hetero- and homozygous mutant Mmp2-allele (Mmp2k00604) on hemocyte …

Author response image 5
Puc expression levels in RasV12-glands comparable to other tumor models.

(A) Differential expression values for puc as quantified from the here presented RNAseq datasets and Bunker, B.D. et al., 2015. Comparison of sequenced genotypes are presented in the respective …

Tables

Key resources table
Reagent type
(species) or resource
DesignationSource or referenceIdentifiersAdditional information
Genetic reagent (D. melanogaster)UAS-dlRNAiBloomington36650
Genetic reagent (D. melanogaster)UAS-l(2)glRNAiVDRC109604/KKRives-Quinto et al., 2017
Genetic reagent (D. melanogaster)UAS-imdRNAiVDRC101834/KKBosch et al., 2005
Genetic reagent (D. melanogaster)UAS-FaddRNAiVDRC100333/KK
Genetic reagent (D. melanogaster)UAS-keyRNAiVDRC100257/KK
Genetic reagent (D. melanogaster)UAS-RelRNAiVDRC108469/KKCammarata-Mouchtouris et al., 2020
Genetic reagent (D. melanogaster)UAS-spzRNAiVDRC105017/KKPanettieri et al., 2020
Genetic reagent (D. melanogaster)UAS-TlRNAiVDRC1000788/KKAlpar et al., 2018
Genetic reagent (D. melanogaster)UAS-cadRNAiVDRC49562/KK
Genetic reagent (D. melanogaster)UAS-Stat92ERNAiVDRC106980/KKRecasens-Alvarez et al., 2017
Genetic reagent (D. melanogaster)UAS-DroncRNAiVDRC100424/KKKale et al., 2015
Genetic reagent (D. melanogaster)UAS-DroncRNAiVDRC23035/GDFlorentin and Arama, 2012
Genetic reagent (D. melanogaster)UAS-Myd88RNAiVDRC25402/GDLi et al., 2020
Genetic reagent (D. melanogaster)UAS-pllRNAiVDRC2889/GDWu et al., 2015
Genetic reagent (D. melanogaster)UAS-DifRNAiVDRC30578/GDWu et al., 2015
Genetic reagent (D. melanogaster)UAS-DifRNAiVDRC30579/GDWu et al., 2015
Genetic reagent (D. melanogaster)UAS-DrsRNAiVDRC2703/GD
Genetic reagent (D. melanogaster)UAS-dfrRNAiS. Certel
Genetic reagent (D. melanogaster)UAS-hidRNAiVDRC8269/GDNagata et al., 2019
Genetic reagent (D. melanogaster)UAS-foxoRNAiVDRC107786/KKMcLaughlin et al., 2019
Genetic reagent (D. melanogaster)UAS-grhRNAiVDRC33680/GD
Genetic reagent (D. melanogaster)UAS-Mef2RNAiBloomington38247Zhao et al., 2020
Genetic reagent (D. melanogaster)UAS-Nrf2RNAiVDRC101235/KKBrock et al., 2017
Genetic reagent (D. melanogaster)UAS-Nrf2RNAiVDRC108127/KKBrock et al., 2017
Genetic reagent (D. melanogaster)UAS-Sox14RNAiVDRC107146/KKWang et al., 2020
Genetic reagent (D. melanogaster)DrsGFPW.-J. Lee
Genetic reagent (D. melanogaster)TRE-GFP1bD. Bohmann
Genetic reagent (D. melanogaster)UAS-DrsB. Lemaitre
Genetic reagent (D. melanogaster)UAS-CecA1B. Lemaitre
Genetic reagent (D. melanogaster)dl15Y. Engström
Genetic reagent (D. melanogaster)Myd88KG03447Y. Engström
Genetic reagent (D. melanogaster)UAS-hidM.Suzanne
Genetic reagent (D. melanogaster)UAS-Mmp2#4A. Page-McCaw
Genetic reagent (D. melanogaster)UAS-Mmp1APM1037A. Page-McCaw
Genetic reagent (D. melanogaster)UAS-Mmp1APM3099A. Page-McCaw
Genetic reagent (D. melanogaster)UAS-RasV12Bloomington4847
Genetic reagent (D. melanogaster)BxMS1096Bloomington8860
Genetic reagent (D. melanogaster)UAS-jnkDNBloomington6409UAS-bskDN
Genetic reagent (D. melanogaster)tubP-Gal80tsBloomington7108
Genetic reagent (D. melanogaster)Mmp2k00604Bloomington10358
Genetic reagent (D. melanogaster)10xStat92E-GFPBloomington26197
Genetic reagent (D. melanogaster)UAS-p35.HBloomington5072
Genetic reagent (D. melanogaster)UAS-mCD8::mRFPBloomington27400
Genetic reagent (D. melanogaster)vkgG00454FlytrapRef. 100; CollagenIV
AntibodyAnti-Hemese (mouse monoclonal)István AndóH2IF(1:5)
AntibodyAnti-pJNK (mouse monoclonal)Cell Signaling TechnologyCat#:9255IF (1:250)
AntibodyAnti-cleaved caspase 3 (rabbit polyclonal)Cell Signaling TechnologyCat#:9661IF(1:200)
AntibodyAnti-dorsal (mouse monoclonal)DSHB7A4-39IF(1:50)
AntibodyAnti-mouse-IgG-Alexa546 (goat polyclonal)ThemoFisher ScientificCat#: A-11030IF(1:500)
AntibodyAnti-rabbit-IgG-Alexa568 (goat polyclonal)ThemoFisher ScientificCat#: A-11011IF(1:500)
Recombinant DNA reagentDrs (cDNA clone)DGRCLP03851
Recombinant DNA reagentCecA1 (cDNA clone)DGRCIP21250
Sequence-based reagentoligo(dT)16-primerThermoFisher ScientificCat#:8080128
Sequence-based reagentDrs_FThis paperqPCR primersgaggagggacgctccagt
Sequence-based reagentDrs_RThis paperqPCR primersttagcatccttcgcaccag
Sequence-based reagentAttD_FThis paperqPCR primersgtttatggagcggtcaacg
Sequence-based reagentAttD_RThis paperqPCR primerstctggaagagattggcttgg
Sequence-based reagentTIMP_FThis paperqPCR primersaacagagcgtcatggcttca
Sequence-based reagentTIMP_RThis paperqPCR primerstcacaccaaaacaggtggca
Sequence-based reagentUpd1_FThis paperqPCR primerscgggtgatcgcttcaatc
Sequence-based reagentUpd1_RThis paperqPCR primersctgcggtactcccgaaag
Sequence-based reagentUpd2_FThis paperqPCR primersaagttcctgccgaacatgac
Sequence-based reagentUpd2_RThis paperqPCR primersatccttgcggaacttgtactg
Sequence-based reagentUpd3_FThis paperqPCR primersactgggagaacacctgcaat
Sequence-based reagentUpd3_RThis paperqPCR primersgcccgtttggttctgtagat
Sequence-based reagentHid_FThis paperqPCR primerstctacgagtgggtcaggatgt
Sequence-based reagentHid_RThis paperqPCR primersgcggatactggaagatttgc
Sequence-based reagentRpr_FThis paperqPCR primersgatcaggcgactctgttgc
Sequence-based reagentRpr_RThis paperqPCR primersactgtgactcccgcaagc
Sequence-based reagentGrim_FThis paperqPCR primersatcgatgaccatgtcggagt
Sequence-based reagentGrim_RThis paperqPCR primerscgcagagcgtagcagaagat
Sequence-based reagentMMP1_FThis paperqPCR primersgtttccaccaccacacagg
Sequence-based reagentMMP1_RThis paperqPCR primersgcagaggcgggtagatagc
Sequence-based reagentMMP2_FThis paperqPCR primerstttcgatgcggacgagac
Sequence-based reagentMMP2_RThis paperqPCR primersgccacgttcagaaaattggt
Sequence-based reagentPUC_FThis paperqPCR primerscgtcatcatcaacggcaat
Sequence-based reagentPUC_RThis paperqPCR primersaggcggggtgtgtttctat
Sequence-based reagentRPL32_FThis paperqPCR primerscggatcgatatgcta
Sequence-based reagentRPL32_RThis paperqPCR primerscgacgcactctgttg
Peptide, recombinant proteinRNase-free DNase IThermoFisher ScientificCat#:EN0521
Peptide, recombinant proteinSuperscriptIIIThermoFisher ScientificCat#:18080-093
Peptide, recombinant proteinPhalloidin-546Molecular probesCat#:A22283
Commercial assay or kitKAPA SYBR FAST qPCR Master Mix (2x) kitKapa Biosystems; Sigma-AldrichKR0389, v9.13
Commercial assay or kitRNAqueous-Micro KitThermoFisher ScientificCat#:AM1931
Commercial assay or kitRNAqueous KitThermoFisher ScientificCat#:AM1912
Commercial assay or kitExperion RNA StdSens Reagents and SuppliesBio-RadCat#:700-7154
Commercial assay or kitExperion RNA StdSens ChipsBio-RadCat#:700-7153
Chemical compound, drugVancomycinSigma-AldrichCat#:V2002
Chemical compound, drugMetronidazoleSigma-AldrichCat#:M3761
Chemical compound, drugNeomycinSigma-AldrichCat#:N1876
Chemical compound, drugCarbenicillinSigma-AldrichCat#:C1389
Chemical compound, drugSodium Hypochlorite solutionFisher ScientificCat#:10401841
Chemical compound, drugDAPISigma-AldrichD9542
Software, algorithmImageJFiji contributorsv1.52nhttps://imagej.nih.gov/ij/
Software, algorithmZen softwareZeissBlue edition
Software, algorithmkallistoBray et al., 2016v0.44.0https://pachterlab.github.io/kallisto/
Software, algorithmsleuthPimentel et al., 2017v0.30.0https://pachterlab.github.io/sleuth/
Software, algorithmGOstatsFalcon and Gentleman, 2007v2.48.0https://github.com/Bioconductor/GOstats/
Software, algorithmAnnotationDbiPagès et al., 2020v1.44.0https://github.com/Bioconductor/AnnotationDbi/
Software, algorithmorg.Dm.eg.dbCarlson, 2019v3.7.0http://bioconductor.org/packages/org.Dm.eg.db/
Software, algorithmRNAseq_sg_
analysis.Rmd
This paperhttps://github.com/robertkrautz/sg_analysis/; Krautz, 2021; copy archived at swh:1:rev:82c91040d3434b215c04cfce11cf73f70300e099
Software, algorithmRNAseq_motif_
enrichment.Rmd
This paperhttps://github.com/robertkrautz/sg_analysis/
Software, algorithmscanner.ijmThis paperhttps://github.com/robertkrautz/sg_analysis/
Software, algorithmRcisTargetAibar et al., 2017v1.6.0https://www.bioconductor.org/packages/release/bioc/html/RcisTarget.html
Software, algorithmbiomaRtDurinck et al., 2009v2.42.1https://bioconductor.org/packages/release/bioc/html/biomaRt.html
Software, algorithmBiostringsPàges et al., 2020v2.54.0https://bioconductor.org/packages/release/bioc/html/Biostrings.html
Software, algorithmPWMEnrichStojnic and Diez, 2020v4.22.0https://www.bioconductor.org/packages/release/bioc/html/PWMEnrich.html

Additional files

Supplementary file 1

Complete list of all crosses associated with the experimental results in the indicated figures.

https://cdn.elifesciences.org/articles/64919/elife-64919-supp1-v2.docx
Supplementary file 2

Complete list of all sequences corresponding to forward and reverse primers used for qPCR.

https://cdn.elifesciences.org/articles/64919/elife-64919-supp2-v2.docx
Supplementary file 3

Overview of all RNAi-lines used in the DrsGFP-reporter assay, including references indicating prior use and evidence for active inhibition of the outlined target of the respective RNAi-line.

https://cdn.elifesciences.org/articles/64919/elife-64919-supp3-v2.docx
Transparent reporting form
https://cdn.elifesciences.org/articles/64919/elife-64919-transrepform-v2.docx

Download links