A structure of substrate-bound Synaptojanin1 provides new insights in its mechanism and the effect of disease mutations

  1. Jone Paesmans
  2. Ella Martin
  3. Babette Deckers
  4. Marjolijn Berghmans
  5. Ritika Sethi
  6. Yannick Loeys
  7. Els Pardon
  8. Jan Steyaert
  9. Patrik Verstreken
  10. Christian Galicia  Is a corresponding author
  11. Wim Versées  Is a corresponding author
  1. Vrije Universiteit Brussel, Belgium
  2. VIB-VUB, Belgium
  3. KU Leuven, Belgium

Abstract

Synaptojanin1 (Synj1) is a phosphoinositide phosphatase, important in clathrin uncoating during endocytosis of presynaptic vesicles. It was identified as a potential drug target for Alzheimer's disease, Down syndrome and TBC1D24-associated epilepsy, while also loss-of-function mutations in Synj1 are associated with epilepsy and Parkinson's disease. Despite its involvement in a range of disorders, structural and detailed mechanistic information regarding the enzyme is lacking. Here, we report the crystal structure of the 5-phosphatase domain of Synj1. Moreover, we also present a structure of this domain bound to the substrate diC8-PI(3,4,5)P3, providing the first image of a 5-phosphatase with a trapped substrate in its active site. Together with an analysis of the contribution of the different inositide phosphate groups to catalysis, these structures provide new insights in the Synj1 mechanism. Finally, we analyzed the effect of three clinical missense mutations (Y793C, R800C, Y849C) on catalysis, unveiling the molecular mechanisms underlying Synj1-associated disease.

Data availability

Diffraction data have been deposited in the PDB under the accession code 7A0V and 7A17. All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 4 and Figure 4 - figure supplements 1-3.

Article and author information

Author details

  1. Jone Paesmans

    Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3292-4609
  2. Ella Martin

    Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
    Competing interests
    No competing interests declared.
  3. Babette Deckers

    Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
    Competing interests
    No competing interests declared.
  4. Marjolijn Berghmans

    Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8699-6915
  5. Ritika Sethi

    Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
    Competing interests
    No competing interests declared.
  6. Yannick Loeys

    Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
    Competing interests
    No competing interests declared.
  7. Els Pardon

    Center for Structural Biology, VIB-VUB, Brussels, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2466-0172
  8. Jan Steyaert

    Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3825-874X
  9. Patrik Verstreken

    Department of Neurosciences, KU Leuven, Leuven, Belgium
    Competing interests
    Patrik Verstreken, Reviewing editor, eLife.
  10. Christian Galicia

    Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
    For correspondence
    Christian.Galicia.Diaz.Santana@vub.be
    Competing interests
    No competing interests declared.
  11. Wim Versées

    Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
    For correspondence
    wim.versees@vub.be
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4695-696X

Funding

Fonds Wetenschappelijk Onderzoek (1S04918N)

  • Jone Paesmans

Fonds Wetenschappelijk Onderzoek (1S09120N)

  • Ella Martin

Fonds Wetenschappelijk Onderzoek (G0D3317N)

  • Patrik Verstreken
  • Wim Versées

Fonds Wetenschappelijk Onderzoek (11D4621N)

  • Babette Deckers

Vrije Universiteit Brussel (SRP50)

  • Wim Versées

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University, United States

Publication history

  1. Received: November 15, 2020
  2. Accepted: December 16, 2020
  3. Accepted Manuscript published: December 22, 2020 (version 1)
  4. Version of Record published: January 4, 2021 (version 2)

Copyright

© 2020, Paesmans et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,490
    Page views
  • 204
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jone Paesmans
  2. Ella Martin
  3. Babette Deckers
  4. Marjolijn Berghmans
  5. Ritika Sethi
  6. Yannick Loeys
  7. Els Pardon
  8. Jan Steyaert
  9. Patrik Verstreken
  10. Christian Galicia
  11. Wim Versées
(2020)
A structure of substrate-bound Synaptojanin1 provides new insights in its mechanism and the effect of disease mutations
eLife 9:e64922.
https://doi.org/10.7554/eLife.64922

Further reading

    1. Biochemistry and Chemical Biology
    Holly Y Chen, Manju Swaroop ... Anand Swaroop
    Research Article

    Ciliopathies manifest from sensory abnormalities to syndromic disorders with multi-organ pathologies, with retinal degeneration a highly penetrant phenotype. Photoreceptor cell death is a major cause of incurable blindness in retinal ciliopathies. To identify drug candidates to maintain photoreceptor survival, we performed an unbiased, high-throughput screening of over 6,000 bioactive small molecules using retinal organoids differentiated from induced pluripotent stem cells (iPSC) of rd16 mouse, which is a model of Leber congenital amaurosis (LCA) type 10 caused by mutations in the cilia-centrosomal gene CEP290. We identified five non-toxic positive hits, including the lead molecule reserpine, which maintained photoreceptor development and survival in rd16 organoids. Reserpine also improved photoreceptors in retinal organoids derived from induced pluripotent stem cells of LCA10 patients and in rd16 mouse retina in vivo. Reserpine-treated patient organoids revealed modulation of signaling pathways related to cell survival/death, metabolism, and proteostasis. Further investigation uncovered dysregulation of autophagy associated with compromised primary cilium biogenesis in patient organoids and rd16 mouse retina. Reserpine partially restored the balance between autophagy and the ubiquitin-proteasome system at least in part by increasing the cargo adaptor p62, resulting in improved primary cilium assembly. Our study identifies effective drug candidates in preclinical studies of CEP290 retinal ciliopathies through cross-species drug discovery using iPSC-derived organoids, highlights the impact of proteostasis in the pathogenesis of ciliopathies, and provides new insights for treatments of retinal neurodegeneration.

    1. Biochemistry and Chemical Biology
    Lisa Goebel, Tonia Kirschner ... Daniel Rauh
    Short Report

    Mutations within Ras proteins represent major drivers in human cancer. In this study, we report the structure-based design, synthesis, as well as biochemical and cellular evaluation of nucleotide-based covalent inhibitors for KRasG13C, an important oncogenic mutant of Ras that has not been successfully addressed in the past. Mass spectrometry experiments and kinetic studies reveal promising molecular properties of these covalent inhibitors, and X-ray crystallographic analysis has yielded the first reported crystal structures of KRasG13C covalently locked with these GDP analogues. Importantly, KRasG13C covalently modified with these inhibitors can no longer undergo SOS-catalysed nucleotide exchange. As a final proof-of-concept, we show that in contrast to KRasG13C, the covalently locked protein is unable to induce oncogenic signalling in cells, further highlighting the possibility of using nucleotide-based inhibitors with covalent warheads in KRasG13C-driven cancer.