A structure of substrate-bound Synaptojanin1 provides new insights in its mechanism and the effect of disease mutations
Abstract
Synaptojanin1 (Synj1) is a phosphoinositide phosphatase, important in clathrin uncoating during endocytosis of presynaptic vesicles. It was identified as a potential drug target for Alzheimer's disease, Down syndrome and TBC1D24-associated epilepsy, while also loss-of-function mutations in Synj1 are associated with epilepsy and Parkinson's disease. Despite its involvement in a range of disorders, structural and detailed mechanistic information regarding the enzyme is lacking. Here, we report the crystal structure of the 5-phosphatase domain of Synj1. Moreover, we also present a structure of this domain bound to the substrate diC8-PI(3,4,5)P3, providing the first image of a 5-phosphatase with a trapped substrate in its active site. Together with an analysis of the contribution of the different inositide phosphate groups to catalysis, these structures provide new insights in the Synj1 mechanism. Finally, we analyzed the effect of three clinical missense mutations (Y793C, R800C, Y849C) on catalysis, unveiling the molecular mechanisms underlying Synj1-associated disease.
Data availability
Diffraction data have been deposited in the PDB under the accession code 7A0V and 7A17. All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 4 and Figure 4 - figure supplements 1-3.
Article and author information
Author details
Funding
Fonds Wetenschappelijk Onderzoek (1S04918N)
- Jone Paesmans
Fonds Wetenschappelijk Onderzoek (1S09120N)
- Ella Martin
Fonds Wetenschappelijk Onderzoek (G0D3317N)
- Patrik Verstreken
- Wim Versées
Fonds Wetenschappelijk Onderzoek (11D4621N)
- Babette Deckers
Vrije Universiteit Brussel (SRP50)
- Wim Versées
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Paesmans et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,845
- views
-
- 248
- downloads
-
- 11
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.