1. Chromosomes and Gene Expression
Download icon

SAM homeostasis is regulated by CFIm-mediated splicing of MAT2A

  1. Anna M Scarborough
  2. Juliana N Flaherty
  3. Olga V Hunter
  4. Kuanqing Liu
  5. Ashwani Kumar
  6. Chao Xing
  7. Benjamin P Tu
  8. Nicholas K Conrad  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
Research Article
  • Cited 2
  • Views 792
  • Annotations
Cite this article as: eLife 2021;10:e64930 doi: 10.7554/eLife.64930

Abstract

S-adenosylmethionine (SAM) is the methyl donor for nearly all cellular methylation events. Cells regulate intracellular SAM levels through intron detention of MAT2A, the only SAM synthetase expressed in most cells. The N6-adenosine methyltransferase METTL16 promotes splicing of the MAT2A detained intron by an unknown mechanism. Using an unbiased CRISPR knock-out screen, we identified CFIm25 (NUDT21) as a regulator of MAT2A intron detention and intracellular SAM levels. CFIm25 is a component of the cleavage factor Im (CFIm) complex that regulates poly(A) site selection, but we show it promotes MAT2A splicing independent of poly(A) site selection. CFIm25-mediated MAT2A splicing induction requires the RS domains of its binding partners, CFIm68 and CFIm59 as well as binding sites in the detained intron and 3´ UTR. These studies uncover mechanisms that regulate MAT2A intron detention and reveal a previously undescribed role for CFIm in splicing and SAM metabolism.

Data availability

Raw and unedited CRISPR screen data is deposited on GEO (GSE172217). Raw and unedited Poly(A)-ClickSeq data is deposited on GEO (GSE158591). Analysis of Poly(A)-ClickSeq is found in Supplementary File 2.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Anna M Scarborough

    Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3621-234X
  2. Juliana N Flaherty

    Microbiology, University of Texas Southwestern Medical Center, Irving, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9745-6762
  3. Olga V Hunter

    Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kuanqing Liu

    Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ashwani Kumar

    Eugine McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Chao Xing

    Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1838-0502
  7. Benjamin P Tu

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5545-9183
  8. Nicholas K Conrad

    Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    nicholas.conrad@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8562-0895

Funding

Welch Foundation (I-1915-20170325)

  • Nicholas K Conrad

National Institute of General Medical Sciences (R01 GM127311)

  • Nicholas K Conrad

National Institute of General Medical Sciences (R01 GM127311-S1)

  • Juliana N Flaherty

National Institute of General Medical Sciences (T32 GM007062)

  • Anna M Scarborough

National Institute of General Medical Sciences (R35 GM136370)

  • Benjamin P Tu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Eric J Wagner, University of Texas Medical Branch at Galveston, United States

Publication history

  1. Received: November 16, 2020
  2. Accepted: May 3, 2021
  3. Accepted Manuscript published: May 5, 2021 (version 1)
  4. Version of Record published: May 21, 2021 (version 2)

Copyright

© 2021, Scarborough et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 792
    Page views
  • 132
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    Alessandro Stirpe et al.
    Research Article

    The SUV39 class of methyltransferase enzymes deposits histone H3 lysine 9 di- and trimethylation (H3K9me2/3), the hallmark of constitutive heterochromatin. How these enzymes are regulated to mark specific genomic regions as heterochromatic is poorly understood. Clr4 is the sole H3K9me2/3 methyltransferase in the fission yeast Schizosaccharomyces pombe, and recent evidence suggests that ubiquitination of lysine 14 on histone H3 (H3K14ub) plays a key role in H3K9 methylation. However, the molecular mechanism of this regulation and its role in heterochromatin formation remain to be determined. Our structure-function approach shows that the H3K14ub substrate binds specifically and tightly to the catalytic domain of Clr4, and thereby stimulates the enzyme by over 250-fold. Mutations that disrupt this mechanism lead to a loss of H3K9me2/3 and abolish heterochromatin silencing similar to clr4 deletion. Comparison with mammalian SET domain proteins suggests that the Clr4 SET domain harbors a conserved sensor for H3K14ub, which mediates licensing of heterochromatin formation.

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Michele Felletti et al.
    Research Article

    The ability to regulate DNA replication initiation in response to changing nutrient conditions is an important feature of most cell types. In bacteria, DNA replication is triggered by the initiator protein DnaA, which has long been suggested to respond to nutritional changes; nevertheless, the underlying mechanisms remain poorly understood. Here, we report a novel mechanism that adjusts DnaA synthesis in response to nutrient availability in Caulobacter crescentus. By performing a detailed biochemical and genetic analysis of the dnaA mRNA, we identified a sequence downstream of the dnaA start codon that inhibits DnaA translation elongation upon carbon exhaustion. Our data show that the corresponding peptide sequence, but not the mRNA secondary structure or the codon choice, is critical for this response, suggesting that specific amino acids in the growing DnaA nascent chain tune translational efficiency. Our study provides new insights into DnaA regulation and highlights the importance of translation elongation as a regulatory target. We propose that translation regulation by nascent chain sequences, like the one described, might constitute a general strategy for modulating the synthesis rate of specific proteins under changing conditions.