eNOS-induced vascular barrier disruption in retinopathy by c-Src activation and tyrosine phosphorylation of VE-cadherin

  1. Takeshi Ninchoji  Is a corresponding author
  2. Dominic T Love
  3. Ross O Smith
  4. Marie Hedlund
  5. Dietmar Vestweber
  6. William C Sessa
  7. Lena Claesson-Welsh  Is a corresponding author
  1. Uppsala University, Sweden
  2. Max Planck Institute for Molecular Biomedicine, Germany
  3. Yale School of Medicine, United States

Abstract

Background: Hypoxia and consequent production of vascular endothelial growth factor A (VEGFA) promote blood vessel leakiness and edema in ocular diseases. Anti-VEGFA therapeutics may aggravate hypoxia; therefore, therapy development is needed.

Methods: Oxygen-induced retinopathy was used as a model to test the role of nitric oxide (NO) in pathological neovascularization and vessel permeability. Suppression of NO formation was achieved chemically using L-NMMA, or genetically, in endothelial NO synthase (eNOS) serine to alanine (S1176A) mutant mice.

Results: Suppression of NO formation resulted in reduced retinal neoangiogenesis. Remaining vascular tufts exhibited reduced vascular leakage through stabilized endothelial adherens junctions, manifested as reduced phosphorylation of vascular endothelial (VE)-cadherin Y685 in a c-Src-dependent manner. Treatment with a single dose of L-NMMA in established retinopathy restored the vascular barrier and prevented leakage.

Conclusion: We conclude that NO destabilizes adherens junctions, resulting in vascular hyperpermeability, by converging with the VEGFA/VEGFR2/c-Src/VE-cadherin pathway.

Funding: This study was supported by the Swedish Cancer foundation (19 0119 Pj 01 H), the Swedish Research Council (2020-01349), the Knut and Alice Wallenberg foundation (KAW 2020.0057) and a Fondation Leducq Transatlantic Network of Excellence Grant in Neurovascular Disease (17 CVD 03). KAW also supported LCW with a Wallenberg Scholar grant (2015.0275). WCS was supported by Grants R35 HL139945, P01 HL1070205, AHA MERIT Award.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-5. Source data files have also been deposited with Dryad: https://doi.org/10.5061/dryad.x69p8czhv

The following data sets were generated

Article and author information

Author details

  1. Takeshi Ninchoji

    Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    For correspondence
    nincho830@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Dominic T Love

    Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Ross O Smith

    Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4239-3204
  4. Marie Hedlund

    Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Dietmar Vestweber

    Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3517-732X
  6. William C Sessa

    Pharmacology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5759-1938
  7. Lena Claesson-Welsh

    Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    For correspondence
    lena.welsh@igp.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4275-2000

Funding

Swedish Cancer Foundation (19 0119 Pj 01 H)

  • Lena Claesson-Welsh

Vetenskapsrådet (2020-01349)

  • Lena Claesson-Welsh

Knut och Alice Wallenbergs Stiftelse (KAW 2015.0030)

  • Lena Claesson-Welsh

Knut och Alice Wallenbergs Stiftelse (KAW.0275)

  • Lena Claesson-Welsh

Fondation Leducq (17 CVD 03)

  • Lena Claesson-Welsh

National Institutes of Health (R35 HL 139945)

  • William C Sessa

National Institutes of Health (P01HL 1070205)

  • William C Sessa

American Heart Association (Merit Award)

  • William C Sessa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mouse husbandry and oxygen-induced retinopathy (OIR) challenge took place at Uppsala University,and the University board of animal experimentation approved all animal work for the studies (ethical permit 5.2.18-8927/16). Animal handling was in accordance to the ARVO statement for the Use of Animals in Ophthalmologic and Vision Research. Professional animal care was provided and overseen by University veterinarians. Every effort was made to minimize suffering of the animal.

Copyright

© 2021, Ninchoji et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,132
    views
  • 287
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Takeshi Ninchoji
  2. Dominic T Love
  3. Ross O Smith
  4. Marie Hedlund
  5. Dietmar Vestweber
  6. William C Sessa
  7. Lena Claesson-Welsh
(2021)
eNOS-induced vascular barrier disruption in retinopathy by c-Src activation and tyrosine phosphorylation of VE-cadherin
eLife 10:e64944.
https://doi.org/10.7554/eLife.64944

Share this article

https://doi.org/10.7554/eLife.64944

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.