Control of tissue development and cell diversity by cell cycle dependent transcriptional filtering

Abstract

Cell cycle duration changes dramatically during development, starting out fast to generate cells quickly and slowing down over time as the organism matures. The cell cycle can also act as a transcriptional filter to control the expression of long gene transcripts which are partially transcribed in short cycles. Using mathematical simulations of cell proliferation, we identify an emergent property, that this filter can act as a tuning knob to control gene transcript expression, cell diversity and the number and proportion of different cell types in a tissue. Our predictions are supported by comparison to single-cell RNA-seq data captured over embryonic development. Additionally, evolutionary genome analysis shows that fast developing organisms have a narrow genomic distribution of gene lengths while slower developers have an expanded number of long genes. Our results support the idea that cell cycle dynamics may be important across multicellular animals for controlling gene transcript expression and cell fate.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source file for the code is available athttps://github.com/BaderLab/Cell_Cycle_Theory

The following previously published data sets were used

Article and author information

Author details

  1. Maria Abou Chakra

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4895-954X
  2. Ruth Isserlin

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Thinh N. Tran

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Gary D Bader

    The Donnelly Centre, University of Toronto, Toronto, Canada
    For correspondence
    gary.bader@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0185-8861

Funding

Canada First Research Excellence Fund

  • Gary D Bader

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Abou Chakra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,829
    views
  • 291
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria Abou Chakra
  2. Ruth Isserlin
  3. Thinh N. Tran
  4. Gary D Bader
(2021)
Control of tissue development and cell diversity by cell cycle dependent transcriptional filtering
eLife 10:e64951.
https://doi.org/10.7554/eLife.64951

Share this article

https://doi.org/10.7554/eLife.64951

Further reading

    1. Computational and Systems Biology
    David B Blumenthal, Marta Lucchetta ... Martin H Schaefer
    Research Article Updated

    Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study biases affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations, and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Peng Li, Sree Pulugulla ... Warren J Leonard
    Short Report

    Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.