Anticipation of temporally structured events in the brain

  1. Caroline S Lee
  2. Mariam Aly
  3. Christopher Baldassano  Is a corresponding author
  1. Columbia University, United States

Abstract

Learning about temporal structure is adaptive because it enables the generation of expectations. We examined how the brain uses experience in structured environments to anticipate upcoming events. During fMRI, individuals watched a 90-second movie clip six times. Using a Hidden Markov Model applied to searchlights across the whole brain, we identified temporal shifts between activity patterns evoked by the first vs. repeated viewings of the movie clip. In many regions throughout the cortex, neural activity patterns for repeated viewings shifted to precede those of initial viewing by up to 15 seconds. This anticipation varied hierarchically in a posterior (less anticipation) to anterior (more anticipation) fashion. We also identified specific regions in which the timing of the brain's event boundaries were related to those of human-labeled event boundaries, with the timing of this relationship shifting on repeated viewings. With repeated viewing, the brain's event boundaries came to precede human-annotated boundaries by 1-4 seconds on average. Together, these results demonstrate a hierarchy of anticipatory signals in the human brain and link them to subjective experiences of events.

Data availability

We used a publicly-available dataset, from https://openneuro.org/datasets/ds001545/versions/1.1.1

The following previously published data sets were used

Article and author information

Author details

  1. Caroline S Lee

    Department of Psychology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariam Aly

    Psychology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4033-6134
  3. Christopher Baldassano

    Psychology, Columbia University, New York, United States
    For correspondence
    c.baldassano@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3540-5019

Funding

The authors declare that there was no funding for this work.

Copyright

© 2021, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,962
    views
  • 581
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caroline S Lee
  2. Mariam Aly
  3. Christopher Baldassano
(2021)
Anticipation of temporally structured events in the brain
eLife 10:e64972.
https://doi.org/10.7554/eLife.64972

Share this article

https://doi.org/10.7554/eLife.64972

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.