Cortical excitability signatures for the degree of sleepiness in human

  1. Chin-Hsuan Chia
  2. Xin-Wei Tang
  3. Yue Cao
  4. Hua-Teng Cao
  5. Wei Zhang
  6. Jun-Fa Wu
  7. Yu-Lian Zhu
  8. Ying Chen
  9. Yi Lin
  10. Yi Wu
  11. Zhe Zhang  Is a corresponding author
  12. Ti-Fei Yuan  Is a corresponding author
  13. Rui-Ping Hu  Is a corresponding author
  1. Huashan hospital, Fudan University, China
  2. Institute of Neuroscience, China
  3. Institute of Brain Science, Fudan University, China
  4. Nantong University, China

Abstract

Sleep is essential in maintaining physiological homeostasis in the brain. While the underlying mechanism is not fully understood, a 'synaptic homeostasis' theory has been proposed that synapses continue to strengthen during awake, and undergo downscaling during sleep. This theory predicts that brain excitability increases with sleepiness. Here, we collected transcranial magnetic stimulation (TMS) measurements in 38 subjects in a 34-hour program, and decoded the relationship between cortical excitability and self-report sleepiness using advanced statistical methods. By utilizing a combination of partial least squares (PLS) regression and mixed-effect models, we identified a robust pattern of excitability changes, which can quantitatively predict the degree of sleepiness. Moreover, we found that synaptic strengthen occurred in both excitatory and inhibitory connections after sleep deprivation. In sum, our study provides supportive evidence for the synaptic homeostasis theory in human sleep and clarifies the process of synaptic strength modulation during sleepiness.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Chin-Hsuan Chia

    rehabilitation medicine, Huashan hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xin-Wei Tang

    rehabilitation medicine, Huashan hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yue Cao

    rehabilitation medicine, Huashan hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Hua-Teng Cao

    CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Wei Zhang

    Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun-Fa Wu

    rehabilitation medicine, Huashan hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu-Lian Zhu

    rehabilitation medicine, Huashan hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ying Chen

    rehabilitation medicine, Huashan hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yi Lin

    rehabilitation medicine, Huashan hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yi Wu

    rehabilitation medicine, Huashan hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Zhe Zhang

    CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai, China
    For correspondence
    zhezhang@ion.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0899-8077
  12. Ti-Fei Yuan

    Psychology, Nantong University, Nantong, China
    For correspondence
    ytf0707@126.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0510-715X
  13. Rui-Ping Hu

    rehabilitation medicine, Huashan hospital, Fudan University, shanghai city, China
    For correspondence
    wuyi4000@163.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Key Research and Development Program of China (2018YFC2001700)

  • Yi Wu

the Key Projects of Shanghai Science and Technology on Biomedicine (18411962300)

  • Rui-Ping Hu

Shanghai Health and Family Planning Commission project (201840225)

  • Yu-Lian Zhu

Shanghai Municipal Key Clinical Specialty (s.shslczdzk02702)

  • Yi Wu

the Key Projects of Shanghai Science and Technology on Biomedicine (20412420200)

  • Yi Wu

Natural Science Foundation of China grant (32071010)

  • Zhe Zhang

Shanghai Pujiang Program (20PJ1415000)

  • Zhe Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura Dugué, Uni­ver­sité de Paris, France

Ethics

Human subjects: 1. That informed consent, and consent to publish, was obtained2. This study was designed as a prospective self-controlled study. The Ethics Committee of Huashan Hospital approved the study (2017-410) and was registered on the Chinese Clinical Trial Registry (ChiCTR1800016771).

Version history

  1. Received: November 22, 2020
  2. Accepted: July 26, 2021
  3. Accepted Manuscript published: July 27, 2021 (version 1)
  4. Version of Record published: August 18, 2021 (version 2)

Copyright

© 2021, Chia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,508
    views
  • 269
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chin-Hsuan Chia
  2. Xin-Wei Tang
  3. Yue Cao
  4. Hua-Teng Cao
  5. Wei Zhang
  6. Jun-Fa Wu
  7. Yu-Lian Zhu
  8. Ying Chen
  9. Yi Lin
  10. Yi Wu
  11. Zhe Zhang
  12. Ti-Fei Yuan
  13. Rui-Ping Hu
(2021)
Cortical excitability signatures for the degree of sleepiness in human
eLife 10:e65099.
https://doi.org/10.7554/eLife.65099

Share this article

https://doi.org/10.7554/eLife.65099

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.