1. Neuroscience
Download icon

L-DOPA modulates activity in the vmPFC, Nucleus Accumbens and VTA during threat extinction learning in humans

  1. Roland Esser
  2. Christoph W Korn
  3. Florian Ganzer
  4. Jan Haaker  Is a corresponding author
  1. University Medical Center Hamburg-Eppendorf, Germany
Research Article
  • Cited 0
  • Views 459
  • Annotations
Cite this article as: eLife 2021;10:e65280 doi: 10.7554/eLife.65280

Abstract

Learning to be safe is central for adaptive behaviour when threats are no longer present. Detecting the absence of an expected threat is key for threat extinction learning and an essential process for the behavioural treatment of anxiety related disorders. One possible mechanism underlying extinction learning is a dopaminergic mismatch signal that encodes the absence of an expected threat. Here we show that such a dopamine-related pathway underlies extinction learning in humans. Dopaminergic enhancement via administration of L-DOPA (vs. Placebo) was associated with reduced retention of differential psychophysiological threat responses at later test, which was mediated by activity in the ventromedial prefrontal cortex that was specific to extinction learning. L-DOPA administration enhanced signals at the time-point of an expected, but omitted threat in extinction learning within the nucleus accumbens, which were functionally coupled with the ventral tegmental area and the amygdala. Computational modelling of threat expectancies further revealed prediction error encoding in nucleus accumbens that was reduced when L-DOPA was administered. Our results thereby provide evidence that extinction learning is influenced by L-DOPA and provide a mechanistic perspective to augment extinction learning by dopaminergic enhancement in humans.

Data availability

All data for analyses and figures in this study are provided in the within the Open Science Framework

The following data sets were generated

Article and author information

Author details

  1. Roland Esser

    Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Christoph W Korn

    Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Florian Ganzer

    Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan Haaker

    Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    j.haaker@uke.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8366-9559

Funding

Deutsche Forschungsgemeinschaft (Project B10 (INST 211/755) of the Collaborative Research Center TRR58)

  • Roland Esser
  • Jan Haaker

Deutsche Forschungsgemeinschaft (HA 7470/3-1)

  • Jan Haaker

Deutsche Forschungsgemeinschaft (collaborative research centre SFB TRR 169)

  • Christoph W Korn

Deutsche Forschungsgemeinschaft (Emmy Noether Research Group (392443797))

  • Christoph W Korn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The ethical approval was obtained by the ethics committee of the Ärztekammer Hamburg (PV5158)that approved the study. Participants gave their written, informed consent to participate in the study, for the collection of the data and consent to publish.

Reviewing Editor

  1. Alexander Shackman, University of Maryland, United States

Publication history

  1. Received: November 30, 2020
  2. Preprint posted: December 7, 2020 (view preprint)
  3. Accepted: September 1, 2021
  4. Accepted Manuscript published: September 2, 2021 (version 1)
  5. Version of Record published: September 15, 2021 (version 2)

Copyright

© 2021, Esser et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 459
    Page views
  • 62
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Debora Fusca, Peter Kloppenburg
    Research Article

    Local interneurons (LNs) mediate complex interactions within the antennal lobe, the primary olfactory system of insects, and the functional analog of the vertebrate olfactory bulb. In the cockroach Periplaneta americana, as in other insects, several types of LNs with distinctive physiological and morphological properties can be defined. Here, we combined whole-cell patch-clamp recordings and Ca2+ imaging of individual LNs to analyze the role of spiking and nonspiking LNs in inter- and intraglomerular signaling during olfactory information processing. Spiking GABAergic LNs reacted to odorant stimulation with a uniform rise in [Ca2+]i in the ramifications of all innervated glomeruli. In contrast, in nonspiking LNs, glomerular Ca2+ signals were odorant specific and varied between glomeruli, resulting in distinct, glomerulus-specific tuning curves. The cell type-specific differences in Ca2+ dynamics support the idea that spiking LNs play a primary role in interglomerular signaling, while they assign nonspiking LNs an essential role in intraglomerular signaling.

    1. Neuroscience
    Wanhui Sheng et al.
    Research Article Updated

    Hypothalamic oxytocinergic magnocellular neurons have a fascinating ability to release peptide from both their axon terminals and from their dendrites. Existing data indicates that the relationship between somatic activity and dendritic release is not constant, but the mechanisms through which this relationship can be modulated are not completely understood. Here, we use a combination of electrical and optical recording techniques to quantify activity-induced calcium influx in proximal vs. distal dendrites of oxytocinergic magnocellular neurons located in the paraventricular nucleus of the hypothalamus (OT-MCNs). Results reveal that the dendrites of OT-MCNs are weak conductors of somatic voltage changes; however, activity-induced dendritic calcium influx can be robustly regulated by both osmosensitive and non-osmosensitive ion channels located along the dendritic membrane. Overall, this study reveals that dendritic conductivity is a dynamic and endogenously regulated feature of OT-MCNs that is likely to have substantial functional impact on central oxytocin release.