L-DOPA modulates activity in the vmPFC, Nucleus Accumbens and VTA during threat extinction learning in humans
Abstract
Learning to be safe is central for adaptive behaviour when threats are no longer present. Detecting the absence of an expected threat is key for threat extinction learning and an essential process for the behavioural treatment of anxiety related disorders. One possible mechanism underlying extinction learning is a dopaminergic mismatch signal that encodes the absence of an expected threat. Here we show that such a dopamine-related pathway underlies extinction learning in humans. Dopaminergic enhancement via administration of L-DOPA (vs. Placebo) was associated with reduced retention of differential psychophysiological threat responses at later test, which was mediated by activity in the ventromedial prefrontal cortex that was specific to extinction learning. L-DOPA administration enhanced signals at the time-point of an expected, but omitted threat in extinction learning within the nucleus accumbens, which were functionally coupled with the ventral tegmental area and the amygdala. Computational modelling of threat expectancies further revealed prediction error encoding in nucleus accumbens that was reduced when L-DOPA was administered. Our results thereby provide evidence that extinction learning is influenced by L-DOPA and provide a mechanistic perspective to augment extinction learning by dopaminergic enhancement in humans.
Data availability
All data for analyses and figures in this study are provided in the within the Open Science Framework
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (Project B10 (INST 211/755) of the Collaborative Research Center TRR58)
- Roland Esser
- Jan Haaker
Deutsche Forschungsgemeinschaft (HA 7470/3-1)
- Jan Haaker
Deutsche Forschungsgemeinschaft (collaborative research centre SFB TRR 169)
- Christoph W Korn
Deutsche Forschungsgemeinschaft (Emmy Noether Research Group (392443797))
- Christoph W Korn
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The ethical approval was obtained by the ethics committee of the Ärztekammer Hamburg (PV5158)that approved the study. Participants gave their written, informed consent to participate in the study, for the collection of the data and consent to publish.
Copyright
© 2021, Esser et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,150
- views
-
- 157
- downloads
-
- 28
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
- Neuroscience
The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.
-
- Neuroscience
When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.