Malaria parasites use a soluble RhopH complex for erythrocyte invasion and an integral form for nutrient uptake

  1. Marc A Schureck
  2. Joseph E Darling
  3. Alan Merk
  4. Jinfeng Shao
  5. Geervani Daggupati
  6. Prakash Srinivasan
  7. Paul D B Olinares
  8. Michael P Rout
  9. Brian T Chait
  10. Kurt Wollenberg
  11. Sriram Subramaniam  Is a corresponding author
  12. Sanjay A Desai  Is a corresponding author
  1. National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States
  2. National Cancer Institute, NIH, United States
  3. Johns Hopkins Bloomberg School of Public Health, United States
  4. The Rockefeller University, United States
  5. University of British Columbia, Canada

Abstract

Malaria parasites use the RhopH complex for erythrocyte invasion and channel-mediated nutrient uptake. As the member proteins are unique to Plasmodium spp., how they interact and traffic through subcellular sites to serve these essential functions is unknown. We show that RhopH is synthesized as a soluble complex of CLAG3, RhopH2, and RhopH3 with 1:1:1 stoichiometry. After transfer to a new host cell, the complex crosses a vacuolar membrane surrounding the intracellular parasite and becomes integral to the erythrocyte membrane through a PTEX translocon-dependent process. We present a 2.9 Å single-particle cryo-electron microscopy structure of the trafficking complex, revealing that CLAG3 interacts with the other subunits over large surface areas. This soluble complex is tightly assembled with extensive disulfide bonding and predicted transmembrane helices shielded. We propose a large protein complex stabilized for trafficking but poised for host membrane insertion through large-scale rearrangements, paralleling smaller two-state pore-forming proteins in other organisms.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Cryo-EM maps have been deposited in EMDB and PDB.

Article and author information

Author details

  1. Marc A Schureck

    Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
    Competing interests
    No competing interests declared.
  2. Joseph E Darling

    Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    No competing interests declared.
  3. Alan Merk

    Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Jinfeng Shao

    Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
    Competing interests
    No competing interests declared.
  5. Geervani Daggupati

    Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Prakash Srinivasan

    Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Paul D B Olinares

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3429-6618
  8. Michael P Rout

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  9. Brian T Chait

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  10. Kurt Wollenberg

    Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
    Competing interests
    No competing interests declared.
  11. Sriram Subramaniam

    Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    For correspondence
    Sriram.Subramaniam@ubc.ca
    Competing interests
    Sriram Subramaniam, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4231-4115
  12. Sanjay A Desai

    Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
    For correspondence
    sdesai@niaid.nih.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2150-2483

Funding

National Institute of Allergy and Infectious Diseases

  • Sanjay A Desai

National Cancer Institute

  • Sriram Subramaniam

National Institutes of Health (P41 GM103314)

  • Brian T Chait

National Institutes of Health (P41 GM109824)

  • Michael P Rout
  • Brian T Chait

Canada Excellence Research Chairs, Government of Canada

  • Sriram Subramaniam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,626
    views
  • 460
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marc A Schureck
  2. Joseph E Darling
  3. Alan Merk
  4. Jinfeng Shao
  5. Geervani Daggupati
  6. Prakash Srinivasan
  7. Paul D B Olinares
  8. Michael P Rout
  9. Brian T Chait
  10. Kurt Wollenberg
  11. Sriram Subramaniam
  12. Sanjay A Desai
(2021)
Malaria parasites use a soluble RhopH complex for erythrocyte invasion and an integral form for nutrient uptake
eLife 10:e65282.
https://doi.org/10.7554/eLife.65282

Share this article

https://doi.org/10.7554/eLife.65282

Further reading

    1. Microbiology and Infectious Disease
    Emma Brown, Gemma Swinscoe ... Stephen Griffin
    Research Article

    Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small Membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics (MD) simulations. Models contained a predicted lumenal rimantadine binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted-therapies.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Daniel Spari, Annina Schmid ... Guido Beldi
    Research Article

    Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is released by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane notably contributes to ATP release and is associated with bacterial death. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analyzed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.