Research: A new era for research into aging

eLife is publishing a special issue on aging, geroscience and longevity to mark the rapid progress made in this field over the past decade, both in terms of mechanistic understanding and translational approaches that are poised to have clinical impact on age-related diseases.
  1. Matt Kaeberlein  Is a corresponding author
  2. Jessica K Tyler  Is a corresponding author
  1. Department of Laboratory Medicine and Pathology, University of Washington, United States
  2. Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, United States

Every major cause of death and disability in the developed world shares a greatest risk factor, and it is probably not what most people would think. Smoking, obesity, a sedentary lifestyle and drinking too much alcohol all contribute to disease: however, their contributions are small in comparison to the physiological changes that result from aging. Whether biological aging causes the many functional declines that occur with age, or just permits them, is perhaps open for debate, but there is no question that, for most of us, biological aging determines how and when we and our loved ones will get sick and die.

This connection between aging and disease has become particularly consequential during the COVID-19 pandemic, with the vast majority of severe cases and deaths occurring among the elderly. Given this obvious relationship, it is somewhat surprising how slowly the biomedical research community has come to appreciate the importance of biological aging in many of the disease processes under study. It is our hope that the articles in the eLife special issue on aging, geroscience and longevity will contribute to a greater appreciation and understanding of aging biology among the broader scientific community. A number of the authors of these articles also spoke at a recent eLife symposium on this topic.

Today, unfortunately, too many scientists study individual diseases without recognizing the impact of aging biology. It is still common, for example, to see research studies in cancer, neuroscience, metabolism and other fields where young animal models (such as 4–6 month old mice) are used to study disease processes that almost exclusively occur in old people. ‘Mice are not people’ is a standard refrain when explaining why so many preclinical therapies fail in human trials. Perhaps the mouse isn’t the problem. Failing to account for the physiological changes that occur during aging, both in mice and in people, may be a much bigger reason why so much preclinical research fails to translate to the clinic.

It is still common to see research studies in cancer, neuroscience, metabolism and other fields where young animal models are used to study disease processes that almost exclusively occur in old people.

Thinking about certain conserved molecular mechanisms as 'hallmarks' or 'pillars' of aging (Kennedy et al., 2014; López-Otín et al., 2013) has benefitted researchers within the field, and has also allowed scientists outside the field to begin to recognize how aging biology impacts on their own research. Many of these conserved mechanisms are studied in the papers in this special issue, including telomere attrition, mitochondrial dysfunction, cellular senescence, epigenetic alterations, stem cell exhaustion, genomic instability, and loss of proteostasis.

Another important advance in aging research has been the development of a concept called geroscience: researchers in this area seek to understand mechanistically how the hallmarks of aging cause age-related disease and functional decline (Sierra and Kohanski, 2017). The growth of the geroscience concept also reflects a recognition that aging research is much closer to clinical application than it was twenty years ago. Numerous interventions have been developed that target one or more of the hallmarks of aging in order to delay, or even reverse, age-related functional declines. In rodents, for example, it has been shown that the drug rapamycin can prevent age-related diseases and improve function in multiple aged tissues and organs. Now, in the eLife special issue on aging, An et al. report that rapamycin also works in the oral cavity and can reverse periodontal disease in mice (An et al., 2020). Other articles suggest translational strategies to target specific hallmarks of aging for intervertebral disc degeneration (Cherif et al., 2020) and age-related heart disease (Chiao et al., 2020). At the time of writing there are two review articles and more than 20 research articles in the special issue, and more will be added over time.

The future of aging research is brighter than ever before, and the pace of discovery is only increasing. We look forward to major breakthroughs over the next few years that will revolutionize the way we think about aging biology and have the potential to significantly impact human healthspan and longevity.

References

Article and author information

Author details

  1. Matt Kaeberlein

    Matt Kaeberlein is an eLife Senior Editor and is in the Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States

    For correspondence
    kaeber@uw.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-3421
  2. Jessica K Tyler

    Jessica K Tyler is an eLife Senior Editor and is in the Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States

    For correspondence
    jet2021@med.cornell.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9765-1659

Publication history

  1. Version of Record published:

Copyright

© 2021, Kaeberlein and Tyler

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,097
    views
  • 349
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matt Kaeberlein
  2. Jessica K Tyler
(2021)
Research: A new era for research into aging
eLife 10:e65286.
https://doi.org/10.7554/eLife.65286
  1. Further reading

Further reading

    1. Cell Biology
    Laura Childers, Jieun Park ... Michel Bagnat
    Research Article

    Dietary protein absorption in neonatal mammals and fishes relies on the function of a specialized and conserved population of highly absorptive lysosome-rich enterocytes (LREs). The gut microbiome has been shown to enhance absorption of nutrients, such as lipids, by intestinal epithelial cells. However, whether protein absorption is also affected by the gut microbiome is poorly understood. Here, we investigate connections between protein absorption and microbes in the zebrafish gut. Using live microscopy-based quantitative assays, we find that microbes slow the pace of protein uptake and degradation in LREs. While microbes do not affect the number of absorbing LRE cells, microbes lower the expression of endocytic and protein digestion machinery in LREs. Using transgene-assisted cell isolation and single cell RNA-sequencing, we characterize all intestinal cells that take up dietary protein. We find that microbes affect expression of bacteria-sensing and metabolic pathways in LREs, and that some secretory cell types also take up protein and share components of protein uptake and digestion machinery with LREs. Using custom-formulated diets, we investigated the influence of diet and LRE activity on the gut microbiome. Impaired protein uptake activity in LREs, along with a protein-deficient diet, alters the microbial community and leads to an increased abundance of bacterial genera that have the capacity to reduce protein uptake in LREs. Together, these results reveal that diet-dependent reciprocal interactions between LREs and the gut microbiome regulate protein absorption.

    1. Cell Biology
    Rachel Pudlowski, Lingyi Xu ... Jennifer T Wang
    Research Advance

    Centrioles have a unique, conserved architecture formed by three linked, ‘triplet’, microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.