A fungal member of the Arabidopsis thaliana phyllosphere antagonizes Albugo laibachii via a GH25 lysozyme

  1. Katharina Eitzen
  2. Priyamedha Sengupta
  3. Samuel Kroll
  4. Eric Kemen  Is a corresponding author
  5. Gunther Doehlemann  Is a corresponding author
  1. University of Cologne, Germany
  2. Max Planck Institute for Plant Breeding Research, Germany
  3. University of Tübingen, Germany

Abstract

Plants are not only challenged by pathogenic organisms, but also colonized by commensal microbes. The network of interactions these microbes establish with their host and amongst each other is suggested to contribute to the immune responses of plants against pathogens. In wild Arabidopsis thaliana populations, the oomycete pathogen Albugo laibachii plays an influential role in structuring the leaf phyllosphere. We show that the epiphytic yeast Moesziomyces bullatus ex Albugo on Arabidopsis, a close relative of pathogenic smut fungi, is an antagonistic member of the A. thaliana phyllosphere, which reduces infection of A. thaliana by A. laibachii. Combination of transcriptomics, reverse genetics and protein characterization identified a GH25 hydrolase with lysozyme activity as a major effector of this microbial antagonism. Our findings broaden the understanding of microbial interactions within the phyllosphere, provide insights into the evolution of epiphytic basidiomycete yeasts and pave the way for novel biocontrol strategies.

Data availability

Genome information and RNA sequencing have been submitted to NCBI Genbank and are available under the following links: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148670

Article and author information

Author details

  1. Katharina Eitzen

    Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Priyamedha Sengupta

    Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Samuel Kroll

    AG Kemen, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric Kemen

    Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
    For correspondence
    eric.kemen@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
  5. Gunther Doehlemann

    Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
    For correspondence
    g.doehlemann@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7353-8456

Funding

Deutsche Forschungsgemeinschaft (SPP 2125 DECRyPT)

  • Katharina Eitzen
  • Priyamedha Sengupta

Deutsche Forschungsgemeinschaft (EXC-2048/1,Project ID 390686111)

  • Katharina Eitzen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Caroline Gutjahr, Technical University of Munich, Germany

Version history

  1. Received: November 30, 2020
  2. Accepted: January 10, 2021
  3. Accepted Manuscript published: January 11, 2021 (version 1)
  4. Version of Record published: February 8, 2021 (version 2)

Copyright

© 2021, Eitzen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,393
    views
  • 369
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katharina Eitzen
  2. Priyamedha Sengupta
  3. Samuel Kroll
  4. Eric Kemen
  5. Gunther Doehlemann
(2021)
A fungal member of the Arabidopsis thaliana phyllosphere antagonizes Albugo laibachii via a GH25 lysozyme
eLife 10:e65306.
https://doi.org/10.7554/eLife.65306

Share this article

https://doi.org/10.7554/eLife.65306

Further reading

    1. Plant Biology
    Zhao-Ying Zeng, Jun-Rong Huang ... Han-Bo Zhang
    Research Article

    Microbes strongly affect invasive plant growth. However, how phyllosphere and rhizosphere soil microbes distinctively affect seedling mortality and growth of invaders across ontogeny under varying soil nutrient levels remains unclear. In this study, we used the invader Ageratina adenophora to evaluate these effects. We found that higher proportions of potential pathogens were detected in core microbial taxa in leaf litter than rhizosphere soil and thus leaf inoculation had more adverse effects on seed germination and seedling survival than soil inoculation. Microbial inoculation at different growth stages altered the microbial community and functions of seedlings, and earlier inoculation had a more adverse effect on seedling survival and growth. The soil nutrient level did not affect microbe-mediated seedling growth and the relative abundance of the microbial community and functions involved in seedling growth. The effects of some microbial genera on seedling survival are distinct from those on growth. Moreover, the A. adenophora seedling-killing effects of fungal strains isolated from dead seedlings by non-sterile leaf inoculation exhibited significant phylogenetic signals, by which strains of Allophoma and Alternaria generally caused high seedling mortality. Our study stresses the essential role of A. adenophora litter microbes in population establishment by regulating seedling density and growth.

    1. Plant Biology
    Vilde Olsson Lalun, Maike Breiden ... Melinka A Butenko
    Research Article

    The abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand inflorescence deficient in abscission (IDA) and the receptor protein kinases HAESA (HAE) and HAESA-like 2 (HSL2). During these cell separation processes, the plant induces defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here, we show that IDA induces a release of cytosolic calcium ions (Ca2+) and apoplastic production of reactive oxygen species, which are signatures of early defense responses. In addition, we find that IDA promotes late defense responses by the transcriptional upregulation of genes known to be involved in immunity. When comparing the IDA induced early immune responses to known immune responses, such as those elicited by flagellin22 treatment, we observe both similarities and differences. We propose a molecular mechanism by which IDA promotes signatures of an immune response in cells destined for separation to guard them from pathogen attack.