Cardiac Optogenetics: A move in the light direction
For a human heart to pump blood through our circulatory system, billions of muscle cells, called cardiomyocytes, must contract in a well-orchestrated manner. Ordered contraction is achieved via sequential electrical excitation of cells. Cardiomyocytes are excited when a sufficiently strong electric stimulus causes them to depolarize; they then remain in their activated state for some time; and, lastly, they return to their resting state, ready to be activated again. For normal heartbeats, electrical excitation originates from specialized pacemaker cells in the sinus node of the heart, which depolarize automatically. This rhythmically generated electrical signal then propagates along cardiomyocytes throughout the heart. A short time after depolarization, cardiomyocytes contract. Thus, rhythmical electrical activity leads to a regular heartbeat.
Cardiac arrhythmias can be caused by various factors – such as diseased cells and scar tissue – and they are associated with serious clinical conditions, including myocardial infarction, heart failure, and sudden cardiac death. One specific mechanism responsible for cardiac arrhythmia is so-called re-entrant electrical activity: this happens when the electrical impulse that excites cardiomyocytes does not terminate after all cells have been activated. Instead, due to pathological changes in cell or tissue properties, the excitation wave finds a way to circle back and re-activate cells out-of-turn. Under certain conditions, a self-sustaining ‘rotor’ can form, where electrical activity keeps circling in the heart for extended periods of time. While rotating, it emits spiral waves of electrical excitation that override the normal heart rhythm (Pandit and Jalife, 2013; Figure 1A).
One elegant way to study mechanisms of cardiac arrhythmias is optogenetics. In cardiac optogenetics, light-sensitive proteins are expressed in heart cells and are used to monitor or steer their electrical properties and function (Schneider-Warme, 2018; Zgierski-Johnston and Schneider-Warme, 2021). For example, blue light can be used to activate an ion-channel protein called channelrhodopsin-2, which results in the depolarization of cells. By activating this protein in cardiomyocytes, researchers have already successfully generated optical pacemakers (Arrenberg et al., 2010; Bruegmann et al., 2010) and conducted optical defibrillation in animal models (Bruegmann et al., 2018; Bruegmann et al., 2016; Crocini et al., 2016; Nyns et al., 2017). Now, in eLife, Stefan Luther and colleagues – including Sayedeh Hussaini as first author – report that low-intensity light may be used to steer rotors (Hussaini et al., 2021). Using a combination of cardiac optogenetics and computational modelling, they describe guiding rotors towards locations where re-entrant electrical activity is no longer possible, thereby terminating cardiac arrhythmias.
Computational modelling has long been used by cardiac researchers to explore how cellular (and sub-cellular) mechanisms act together in healthy or diseased heart tissue (Loewe et al., 2018). Hussaini et al. started with an established mathematical model of cardiomyocyte electrical activity (Petkova-Kirova et al., 2012) and added differential equations that describe light-activated currents mediated by channelrhodopsin-2 (Williams et al., 2013). A reaction-diffusion equation (the so-called monodomain model) was then used to couple multiple model cells in a two-dimensional tissue model.
Utilizing this model, the researchers – who are based at the Max Planck Institute for Dynamics and Self-Organization in Göttingen, the University of Göttingen and other institutions in Germany, France, Italy and Canada – first investigated the effect of illumination with intensities so low that the cardiomyocytes were slightly depolarized from their resting state, but were not excited. They found that increasing the intensity of such ‘sub-threshold’ illumination has two effects: it decreases the velocity at which electrical excitation is relayed from cell to cell, and it decreases the dominant frequency of spiral waves. Both results are in keeping with classically expected single-cell behaviour, but Hussaini et al. confirmed them in real tissue for the first time by performing ex vivo experiments with intact mouse hearts.
Next, Hussaini et al. simulated what could happen when using sub-threshold illumination with linearly graded light intensity. They found that the rotor – which previously had been stable – tended to move towards the part of the tissue where the light intensity was higher (Figure 1B). Moreover, the steeper the gradient, the faster the rotor moved. In another simulation, one region of the tissue was exposed to light of constant, low intensity, while the remaining tissue was not illuminated: here the rotor moved to the illuminated region (Figure 1C). Finally, they predicted that successive partial illuminations of the 2D tissue could be used to steer the rotor to parts of the tissue where the rotor could not continue to self-sustain.
Hussaini and colleagues propose a novel approach for the termination of cardiac arrhythmias using sub-threshold illumination. In fact, the underlying mechanism may have played a role in previous breakthroughs in cardiac optogenetics, such as the demonstration of optical defibrillation in animal models mentioned above. Further work is needed to verify effects of interventions proposed based on computational modelling, as hearts are characterized not only by a complex geometry, but also by tissue heterogeneities that rotors might become anchored to. Looking to the future, the obvious question is whether optogenetic modulation of cardiac electrophysiology, as described here, may ultimately be used to terminate arrhythmias in humans. Answering this question will require further research – it will be necessary, for example, to overcome the challenges associated with the expression of light-gated channels in cardiomyocytes, and with targeted light delivery. The work reported in this paper is undoubtedly an important step in the light direction.
References
-
Optogenetic control of heart muscle in vitro and in vivoNature Methods 7:897–900.https://doi.org/10.1038/nmeth.1512
-
Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulationsJournal of Clinical Investigation 126:3894–3904.https://doi.org/10.1172/JCI88950
-
Optogenetic termination of atrial fibrillation in miceCardiovascular Research 114:713–723.https://doi.org/10.1093/cvr/cvx250
-
Cardiac ischemia—insights from computational modelsHerzschrittmachertherapie + Elektrophysiologie 29:48–56.https://doi.org/10.1007/s00399-017-0539-6
-
Rotors and the dynamics of cardiac fibrillationCirculation Research 112:849–862.https://doi.org/10.1161/CIRCRESAHA.111.300158
-
Mathematical modeling mechanisms of arrhythmias in transgenic mouse heart overexpressing TNF-αAmerican Journal of Physiology-Heart and Circulatory Physiology 302:H934–H952.https://doi.org/10.1152/ajpheart.00493.2011
-
The power of optogenetics: potential in cardiac experimental and clinical electrophysiologyHerzschrittmachertherapie + Elektrophysiologie 29:24–29.https://doi.org/10.1007/s00399-017-0545-8
-
Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 modelPLOS Computational Biology 9:e1003220.https://doi.org/10.1371/journal.pcbi.1003220
-
Observing and manipulating cell-specific cardiac function with lightAdvances in Experimental Medicine and Biology 1293:377–388.https://doi.org/10.1007/978-981-15-8763-4_24
Article and author information
Author details
Publication history
Copyright
© 2021, Wülfers and Schneider-Warme
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 941
- views
-
- 95
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Genetics and Genomics
Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.
-
- Computational and Systems Biology
- Neuroscience
Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.