The whale shark genome reveals patterns of vertebrate gene family evolution

  1. Milton Tan  Is a corresponding author
  2. Anthony K Redmond
  3. Helen Dooley
  4. Ryo Nozu
  5. Keiichi Sato
  6. Shigehiro Kuraku
  7. Sergey Koren
  8. Adam M Phillippy
  9. Alistair DM Dove
  10. Timothy Read
  1. University of Illinois Urbana-Champaign, United States
  2. Trinity College Dublin, Ireland
  3. University of Maryland School of Medicine, United States
  4. Okinawa Churashima Research Center, Japan
  5. National Institute of Genetics, Japan
  6. National Center for Biotechnology Information, United States
  7. Georgia Aquarium, United States
  8. Emory University School of Medicine, United States

Abstract

Chondrichthyes (cartilaginous fishes) are fundamental for understanding vertebrate evolution, yet their genomes are understudied. We report long-read sequencing of the whale shark genome to generate the best gapless chondrichthyan genome assembly yet with higher contig contiguity than all other cartilaginous fish genomes, and studied vertebrate genomic evolution of ancestral gene families, immunity, and gigantism. We found a major increase in gene families at the origin of gnathostomes (jawed vertebrates) independent of their genome duplication. We studied vertebrate pathogen recognition receptors (PRRs), which are key in initiating innate immune defense, and found diverse patterns of gene family evolution, demonstrating that adaptive immunity in gnathostomes did not fully displace germline-encoded PRR innovation. We also discovered a new Toll-like receptor (TLR29) and three NOD1 copies in the whale shark. We found chondrichthyan and giant vertebrate genomes had decreased substitution rates compared to other vertebrates, but gene family expansion rates varied among vertebrate giants, suggesting substitution and expansion rates of gene families are decoupled in vertebrate genomes. Finally, we found gene families that shifted in expansion rate in vertebrate giants were enriched for human cancer-related genes, consistent with gigantism requiring adaptations to suppress cancer.

Data availability

Raw genome sequencing data have been deposited to SRA under SRX3471980. Raw transcriptome sequence sequence data are available at NCBI BioProject ID PRJDB8472 and DDBJ DRA ID DRA008572. The assembly has been deposited to GenBank and is accessioned as GCA_001642345.2.

The following data sets were generated

Article and author information

Author details

  1. Milton Tan

    Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, United States
    For correspondence
    miltont@illinois.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9803-0827
  2. Anthony K Redmond

    Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
    Competing interests
    No competing interests declared.
  3. Helen Dooley

    Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2570-574X
  4. Ryo Nozu

    Okinawa Churashima Research Center, Okinawa Churashima Research Center, Okinawa, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1099-3152
  5. Keiichi Sato

    Okinawa Churashima Research Center, Okinawa Churashima Research Center, Okinawa, Japan
    Competing interests
    No competing interests declared.
  6. Shigehiro Kuraku

    Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
    Competing interests
    Shigehiro Kuraku, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1464-8388
  7. Sergey Koren

    National Center for Biotechnology Information, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Adam M Phillippy

    National Center for Biotechnology Information, Bethesda, United States
    Competing interests
    No competing interests declared.
  9. Alistair DM Dove

    Georgia Aquarium, Georgia Aquarium, Atlanta, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3239-4772
  10. Timothy Read

    Emory University School of Medicine, Atlanta, United States
    Competing interests
    No competing interests declared.

Funding

George Aquarium

  • Alistair DM Dove

Emory School of Medicine Development

  • Timothy Read

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 6,858
    views
  • 607
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Milton Tan
  2. Anthony K Redmond
  3. Helen Dooley
  4. Ryo Nozu
  5. Keiichi Sato
  6. Shigehiro Kuraku
  7. Sergey Koren
  8. Adam M Phillippy
  9. Alistair DM Dove
  10. Timothy Read
(2021)
The whale shark genome reveals patterns of vertebrate gene family evolution
eLife 10:e65394.
https://doi.org/10.7554/eLife.65394

Share this article

https://doi.org/10.7554/eLife.65394

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Michael James Chambers, Sophia B Scobell, Meru J Sadhu
    Research Article

    Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued.  However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.

    1. Ecology
    2. Evolutionary Biology
    Zhixian Zhang, Jianying Li ... Songdou Zhang
    Research Article

    Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. Cacopsylla chinensis exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor CcTRPM regulate the transition from summer-form to winter-form in C. chinensis by impacting cuticle content and thickness. However, the underling neuroendocrine regulatory mechanism remains largely unknown. Bursicon, also known as the tanning hormone, is responsible for the hardening and darkening of the insect cuticle. In this study, we report for the first time on the novel function of Bursicon and its receptor in the transition from summer-form to winter-form in C. chinensis. Firstly, we identified CcBurs-α and CcBurs-β as two typical subunits of Bursicon in C. chinensis, which were regulated by low temperature (10 °C) and CcTRPM. Subsequently, CcBurs-α and CcBurs-β formed a heterodimer that mediated the transition from summer-form to winter-form by influencing the cuticle chitin contents and cuticle thickness. Furthermore, we demonstrated that CcBurs-R acts as the Bursicon receptor and plays a critical role in the up-stream signaling of the chitin biosynthesis pathway, regulating the transition from summer-form to winter-form. Finally, we discovered that miR-6012 directly targets CcBurs-R, contributing to the regulation of Bursicon signaling in the seasonal polyphenism of C. chinensis. In summary, these findings reveal the novel function of the neuroendocrine regulatory mechanism underlying seasonal polyphenism and provide critical insights into the insect Bursicon and its receptor.