The whale shark genome reveals patterns of vertebrate gene family evolution

  1. Milton Tan  Is a corresponding author
  2. Anthony K Redmond
  3. Helen Dooley
  4. Ryo Nozu
  5. Keiichi Sato
  6. Shigehiro Kuraku
  7. Sergey Koren
  8. Adam M Phillippy
  9. Alistair DM Dove
  10. Timothy Read
  1. University of Illinois Urbana-Champaign, United States
  2. Trinity College Dublin, Ireland
  3. University of Maryland School of Medicine, United States
  4. Okinawa Churashima Research Center, Japan
  5. National Institute of Genetics, Japan
  6. National Center for Biotechnology Information, United States
  7. Georgia Aquarium, United States
  8. Emory University School of Medicine, United States

Abstract

Chondrichthyes (cartilaginous fishes) are fundamental for understanding vertebrate evolution, yet their genomes are understudied. We report long-read sequencing of the whale shark genome to generate the best gapless chondrichthyan genome assembly yet with higher contig contiguity than all other cartilaginous fish genomes, and studied vertebrate genomic evolution of ancestral gene families, immunity, and gigantism. We found a major increase in gene families at the origin of gnathostomes (jawed vertebrates) independent of their genome duplication. We studied vertebrate pathogen recognition receptors (PRRs), which are key in initiating innate immune defense, and found diverse patterns of gene family evolution, demonstrating that adaptive immunity in gnathostomes did not fully displace germline-encoded PRR innovation. We also discovered a new Toll-like receptor (TLR29) and three NOD1 copies in the whale shark. We found chondrichthyan and giant vertebrate genomes had decreased substitution rates compared to other vertebrates, but gene family expansion rates varied among vertebrate giants, suggesting substitution and expansion rates of gene families are decoupled in vertebrate genomes. Finally, we found gene families that shifted in expansion rate in vertebrate giants were enriched for human cancer-related genes, consistent with gigantism requiring adaptations to suppress cancer.

Data availability

Raw genome sequencing data have been deposited to SRA under SRX3471980. Raw transcriptome sequence sequence data are available at NCBI BioProject ID PRJDB8472 and DDBJ DRA ID DRA008572. The assembly has been deposited to GenBank and is accessioned as GCA_001642345.2.

The following data sets were generated

Article and author information

Author details

  1. Milton Tan

    Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, United States
    For correspondence
    miltont@illinois.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9803-0827
  2. Anthony K Redmond

    Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
    Competing interests
    No competing interests declared.
  3. Helen Dooley

    Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2570-574X
  4. Ryo Nozu

    Okinawa Churashima Research Center, Okinawa Churashima Research Center, Okinawa, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1099-3152
  5. Keiichi Sato

    Okinawa Churashima Research Center, Okinawa Churashima Research Center, Okinawa, Japan
    Competing interests
    No competing interests declared.
  6. Shigehiro Kuraku

    Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
    Competing interests
    Shigehiro Kuraku, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1464-8388
  7. Sergey Koren

    National Center for Biotechnology Information, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Adam M Phillippy

    National Center for Biotechnology Information, Bethesda, United States
    Competing interests
    No competing interests declared.
  9. Alistair DM Dove

    Georgia Aquarium, Georgia Aquarium, Atlanta, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3239-4772
  10. Timothy Read

    Emory University School of Medicine, Atlanta, United States
    Competing interests
    No competing interests declared.

Funding

George Aquarium

  • Alistair DM Dove

Emory School of Medicine Development

  • Timothy Read

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 7,691
    views
  • 659
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Milton Tan
  2. Anthony K Redmond
  3. Helen Dooley
  4. Ryo Nozu
  5. Keiichi Sato
  6. Shigehiro Kuraku
  7. Sergey Koren
  8. Adam M Phillippy
  9. Alistair DM Dove
  10. Timothy Read
(2021)
The whale shark genome reveals patterns of vertebrate gene family evolution
eLife 10:e65394.
https://doi.org/10.7554/eLife.65394

Share this article

https://doi.org/10.7554/eLife.65394

Further reading

    1. Evolutionary Biology
    Julia D Sigwart, Yunlong Li ... Jin Sun
    Research Article

    A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.

    1. Evolutionary Biology
    Mauna R Dasari, Kimberly E Roche ... Elizabeth A Archie
    Research Article

    Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.