Humans optimally anticipate and compensate for an uneven step during walking

  1. Osman Darici  Is a corresponding author
  2. Arthur D Kuo
  1. University of Calgary, Canada

Abstract

The simple task of walking up a sidewalk curb is actually a dynamic prediction task. The curb is a disturbance that could cause a loss of momentum if not anticipated and compensated for. It might be possible to adjust momentum sufficiently to ensure undisturbed time of arrival, but there are infinite possible ways to do so. Much of steady, level gait is determined by energy economy, which should be at least as important with terrain disturbances. It is, however, unknown whether economy also governs walking up a curb, and whether anticipation helps. Here we show that humans compensate with an anticipatory pattern of forward speed adjustments, predicted by a criterion of minimizing mechanical energy input. The strategy is mechanistically predicted by optimal control for a simple model of bipedal walking dynamics, with each leg's push-off work as input. Optimization predicts a tri-phasic trajectory of speed (and thus momentum) adjustments, including an anticipatory phase. In experiment, human subjects ascend an artificial curb with the predicted tri-phasic trajectory, which approximately conserves overall walking speed relative to undisturbed flat ground. The trajectory involves speeding up in a few steps before the curb, losing considerable momentum from ascending it, and then regaining speed in a few steps thereafter. Descending the curb entails a nearly opposite, but still anticipatory, speed fluctuation trajectory, in agreement with model predictions that speed fluctuation amplitudes should scale linearly with curb height. The fluctuation amplitudes also decrease slightly with faster average speeds, also as predicted by model. Humans can reason about the dynamics of walking to plan anticipatory and economical control, even with a sidewalk curb in the way.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Osman Darici

    Faculty of Kinesiology, University of Calgary, Calgary, Canada
    For correspondence
    osman.darici1@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6217-5656
  2. Arthur D Kuo

    Faculty of Kinesiology, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation

  • Osman Darici
  • Arthur D Kuo

ONR ETOWL program

  • Osman Darici
  • Arthur D Kuo

NIH AG030815

  • Osman Darici
  • Arthur D Kuo

The Dr. Benno Nigg Research Chair University of Calgary

  • Osman Darici
  • Arthur D Kuo

NSERC Discovery program

  • Osman Darici
  • Arthur D Kuo

Canada Research Chair program

  • Osman Darici
  • Arthur D Kuo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All subjects provided written informed consent prior to the experiment, according to Institutional Review Board procedures (University of Michigan, Energetics, Balance, and Control of Human Locomotion HUM00020554).

Copyright

© 2022, Darici & Kuo

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 924
    views
  • 142
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Osman Darici
  2. Arthur D Kuo
(2022)
Humans optimally anticipate and compensate for an uneven step during walking
eLife 11:e65402.
https://doi.org/10.7554/eLife.65402

Share this article

https://doi.org/10.7554/eLife.65402

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Iksoo Chang, Taegon Chung, Sangyeol Kim
    Research Article

    Recent experimental studies showed that electrically coupled neural networks like in mammalian inferior olive nucleus generate synchronized rhythmic activity by the subthreshold sinusoidal-like oscillations of the membrane voltage. Understanding the basic mechanism and its implication of such phenomena in the nervous system bears fundamental importance and requires preemptively the connectome information of a given nervous system. Inspired by these necessities of developing a theoretical and computational model to this end and, however, in the absence of connectome information for the inferior olive nucleus, here we investigated interference phenomena of the subthreshold oscillations in the reference system Caenorhabditis elegans for which the structural anatomical connectome was completely known recently. We evaluated how strongly the sinusoidal wave was transmitted between arbitrary two cells in the model network. The region of cell-pairs that are good at transmitting waves changed according to the wavenumber of the wave, for which we named a wavenumber-dependent transmission map. Also, we unraveled that (1) the transmission of all cell-pairs disappeared beyond a threshold wavenumber, (2) long distance and regular patterned transmission existed in the body-wall muscles part of the model network, and (3) major hub cell-pairs of the transmission were identified for many wavenumber conditions. A theoretical and computational model presented in this study provided fundamental insight for understanding how the multi-path constructive/destructive interference of the subthreshold oscillations propagating on electrically coupled neural networks could generate wavenumber-dependent synchronized rhythmic activity.

    1. Physics of Living Systems
    Sina Heydari, Haotian Hang, Eva Kanso
    Research Article

    The coordinated motion of animal groups through fluids is thought to reduce the cost of locomotion to individuals in the group. However, the connection between the spatial patterns observed in collectively moving animals and the energetic benefits at each position within the group remains unclear. To address this knowledge gap, we study the spontaneous emergence of cohesive formations in groups of fish, modeled as flapping foils, all heading in the same direction. We show in pairwise formations and with increasing group size that (1) in side-by-side arrangements, the reciprocal nature of flow coupling results in an equal distribution of energy requirements among all members, with reduction in cost of locomotion for swimmers flapping inphase but an increase in cost for swimmers flapping antiphase, and (2) in inline arrangements, flow coupling is non-reciprocal for all flapping phase, with energetic savings in favor of trailing swimmers, but only up to a finite number of swimmers, beyond which school cohesion and energetic benefits are lost at once. We explain these findings mechanistically and we provide efficient diagnostic tools for identifying locations in the wake of single and multiple swimmers that offer opportunities for hydrodynamic benefits to aspiring followers. Our results imply a connection between the resources generated by flow physics and social traits that influence greedy and cooperative group behavior.