Localization, proteomics, and metabolite profiling reveal a putative vesicular transporter for UDP-glucose

  1. Cheng Qian
  2. Zhaofa Wu
  3. Rongbo Sun
  4. Huasheng Yu
  5. Jianzhi Zeng
  6. Yi Rao
  7. Yulong Li  Is a corresponding author
  1. School of Life Sciences, Tsinghua University, China
  2. Peking University School of Life Sciences, China
  3. Peking University, China
  4. Peiking University, China

Abstract

Vesicular neurotransmitter transporters (VNTs) mediate the selective uptake and enrichment of small molecule neurotransmitters into synaptic vesicles (SVs) and are therefore a major determinant of the synaptic output of specific neurons. To identify novel VNTs expressed on SVs (thus identifying new neurotransmitters and/or neuromodulators), we conducted localization profiling of 361 solute carrier (SLC) transporters tagging with a fluorescent protein in neurons, which revealed 40 possible candidates through comparison with a known SV marker. We parallelly performed proteomics analysis of immunoisolated SVs and identified 7 transporters in overlap. Ultrastructural analysis confirmed one of the transporters, SLC35D3, localized to SVs. Finally, by combining metabolite profiling with a radiolabeled substrate transport assay, we identified UDP-glucose as the principal substrate for SLC35D3. These results provide new insights into the functional role of SLC transporters in neurotransmission and improve our understanding of the molecular diversity of chemical transmitters.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Cheng Qian

    School of Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhaofa Wu

    State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Rongbo Sun

    State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Huasheng Yu

    Peking-Tsinghua Center for Life Sciences, Peiking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianzhi Zeng

    Peking-Tsinghua Center for Life Sciences, Peiking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yi Rao

    Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0405-5426
  7. Yulong Li

    State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
    For correspondence
    yulongli@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9166-9919

Funding

Beijing Municipal Science & Technology Commission (Z181100001318002)

  • Yulong Li

Peking-Tsinghua Center for Life Sciences

  • Yulong Li

State Key Laboratory of Membrane Biology

  • Yulong Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed using protocols approved by the Institutional Animal Care and Use Committee at Peking University. ( LSC LiYL 1 )

Copyright

© 2021, Qian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,757
    views
  • 483
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cheng Qian
  2. Zhaofa Wu
  3. Rongbo Sun
  4. Huasheng Yu
  5. Jianzhi Zeng
  6. Yi Rao
  7. Yulong Li
(2021)
Localization, proteomics, and metabolite profiling reveal a putative vesicular transporter for UDP-glucose
eLife 10:e65417.
https://doi.org/10.7554/eLife.65417

Share this article

https://doi.org/10.7554/eLife.65417

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.