1. Cell Biology
  2. Neuroscience
Download icon

Ciliary neuropeptidergic signaling dynamically regulates excitatory synapses in postnatal neocortical pyramidal neurons

  1. Lauren Tereshko
  2. Ya Gao
  3. Brian A Cary
  4. Gina G Turrigiano  Is a corresponding author
  5. Piali Sengupta  Is a corresponding author
  1. Brandeis University, United States
Research Article
  • Cited 0
  • Views 1,061
  • Annotations
Cite this article as: eLife 2021;10:e65427 doi: 10.7554/eLife.65427

Abstract

Primary cilia are compartmentalized sensory organelles present on the majority of neurons in the mammalian brain throughout adulthood. Recent evidence suggests that cilia regulate multiple aspects of neuronal development, including the maintenance of neuronal connectivity. However, whether ciliary signals can dynamically modulate postnatal circuit excitability is unknown. Here we show that acute cell-autonomous knockdown of ciliary signaling rapidly strengthens glutamatergic inputs onto cultured rat neocortical pyramidal neurons, and increases spontaneous firing. This increased excitability occurs without changes to passive neuronal properties or intrinsic excitability. Further, the neuropeptide receptor somatostatin receptor 3 (SSTR3) is localized nearly exclusively to excitatory neuron cilia both in vivo and in culture, and pharmacological manipulation of SSTR3 signaling bidirectionally modulates excitatory synaptic inputs onto these neurons. Our results indicate that ciliary neuropeptidergic signaling dynamically modulates excitatory synapses, and suggest that defects in this regulation may underlie a subset of behavioral and cognitive disorders associated with ciliopathies.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all relevant figures.

Article and author information

Author details

  1. Lauren Tereshko

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
  2. Ya Gao

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9608-8988
  3. Brian A Cary

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1759-164X
  4. Gina G Turrigiano

    Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    turrigiano@brandeis.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4476-4059
  5. Piali Sengupta

    Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    sengupta@brandeis.edu
    Competing interests
    Piali Sengupta, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7468-0035

Funding

National Institute of General Medical Sciences (R35 GM122463)

  • Piali Sengupta

National Institute of Mental Health (R21 MH118464)

  • Gina G Turrigiano
  • Piali Sengupta

National Institute of Neurological Disorders and Stroke (R35 NS111562)

  • Gina G Turrigiano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the the Brandeis University IACUC (IACUC protocol # 18002) and were performed according to NIH guidelines.

Reviewing Editor

  1. Anne E West, Duke University School of Medicine, United States

Publication history

  1. Received: December 3, 2020
  2. Accepted: March 1, 2021
  3. Accepted Manuscript published: March 2, 2021 (version 1)
  4. Version of Record published: March 11, 2021 (version 2)

Copyright

© 2021, Tereshko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,061
    Page views
  • 158
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    James Rae et al.
    Tools and Resources Updated

    Genetic tags allow rapid localization of tagged proteins in cells and tissues. APEX, an ascorbate peroxidase, has proven to be one of the most versatile and robust genetic tags for ultrastructural localization by electron microscopy (EM). Here, we describe a simple method, APEX-Gold, which converts the diffuse oxidized diaminobenzidine reaction product of APEX into a silver/gold particle akin to that used for immunogold labelling. The method increases the signal-to-noise ratio for EM detection, providing unambiguous detection of the tagged protein, and creates a readily quantifiable particulate signal. We demonstrate the wide applicability of this method for detection of membrane proteins, cytoplasmic proteins, and cytoskeletal proteins. The method can be combined with different EM techniques including fast freezing and freeze substitution, focussed ion beam scanning EM, and electron tomography. Quantitation of expressed APEX-fusion proteins is achievable using membrane vesicles generated by a cell-free expression system. These membrane vesicles possess a defined quantum of signal, which can act as an internal standard for determination of the absolute density of expressed APEX-fusion proteins. Detection of fusion proteins expressed at low levels in cells from CRISPR-edited mice demonstrates the high sensitivity of the APEX-Gold method.

    1. Cell Biology
    David W Sanders et al.
    Research Article Updated

    Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.