T cell self-reactivity during thymic development dictates the timing of positive selection

  1. Lydia K Lutes
  2. Zoë Steier
  3. Laura L McIntyre
  4. Shraddha Pandey
  5. James Kaminski
  6. Ashley R Hoover
  7. Silvia Ariotti
  8. Aaron Streets
  9. Nir Yosef
  10. Ellen A Robey  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Boston Children's Hospital, United States
  3. University of Lisbon, Portugal

Abstract

Functional tuning of T cells based on their degree of self-reactivity is established during positive selection in the thymus, although how positive selection differs for thymocytes with relatively low versus high self-reactivity is unclear. In addition, preselection thymocytes are highly sensitive to low-affinity ligands, but the mechanism underlying their enhanced TCR sensitivity is not fully understood. Here we show that murine thymocytes with low self-reactivity experience briefer TCR signals and complete positive selection more slowly than those with high self-reactivity. Additionally, we provide evidence that cells with low self-reactivity retain a preselection gene expression signature as they mature, including genes previously implicated in modulating TCR sensitivity and a novel group of ion channel genes. Our results imply that thymocytes with low self-reactivity down-regulate TCR sensitivity more slowly during positive selection, and associate membrane ion channel expression with thymocyte self-reactivity and progress through positive selection.

Data availability

RNA-seq data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE164896.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Lydia K Lutes

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zoë Steier

    Department of Bioengineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura L McIntyre

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shraddha Pandey

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James Kaminski

    Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ashley R Hoover

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Silvia Ariotti

    Instituto de Medicina Molecular João Lobo Antunes, University of Lisbon, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Aaron Streets

    Department of Bioengineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nir Yosef

    Department of Electrical Engineering and Computer Science and the Center for Computational Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9004-1225
  10. Ellen A Robey

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    erobey@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3630-5266

Funding

National Institutes of Health (RO1AI064227)

  • Ellen A Robey

National Institutes of Health (T32AI100829)

  • Laura L McIntyre
  • Ashley R Hoover

Human Frontiers Fellowship

  • Silvia Ariotti

National Science Foundation (GRFP)

  • Zoë Steier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Juan Carlos Zúñiga-Pflücker, University of Toronto, Sunnybrook Research Institute, Canada

Ethics

Animal experimentation: All mice were bred and maintained under pathogen-free conditions in an American Association of Laboratory Animal Care-approved facility at the University of California, Berkeley. The University of California, Berkeley Animal Use and Care Committee approved all procedures (Animal Care and Use Protocol #AUP-2016-07-9006).

Version history

  1. Received: December 3, 2020
  2. Accepted: April 21, 2021
  3. Accepted Manuscript published: April 22, 2021 (version 1)
  4. Version of Record published: May 12, 2021 (version 2)

Copyright

© 2021, Lutes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,662
    views
  • 351
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lydia K Lutes
  2. Zoë Steier
  3. Laura L McIntyre
  4. Shraddha Pandey
  5. James Kaminski
  6. Ashley R Hoover
  7. Silvia Ariotti
  8. Aaron Streets
  9. Nir Yosef
  10. Ellen A Robey
(2021)
T cell self-reactivity during thymic development dictates the timing of positive selection
eLife 10:e65435.
https://doi.org/10.7554/eLife.65435

Share this article

https://doi.org/10.7554/eLife.65435

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.