Abstract

During obesity and high fat-diet (HFD) feeding in mice, sustained low-grade inflammation includes not only increased pro-inflammatory macrophages in the expanding adipose tissue, but also bone marrow (BM) production of invasive Ly6Chigh monocytes. As BM adiposity also accrues with HFD, we explored the relationship between the gains in BM white adipocytes and invasive Ly6Chigh monocytes in vivo and through ex vivo paradigms. We find a temporal and causal link between BM adipocyte whitening and the Ly6Chigh monocyte surge, preceding the adipose tissue macrophage rise during HFD. Phenocopying this, ex vivo treatment of BM cells with conditioned media from BM adipocytes or from bona fide white adipocytes favoured Ly6Chigh monocyte preponderance. Notably, Ly6Chigh skewing was preceded by monocyte metabolic reprogramming towards glycolysis, reduced oxidative potential and increased mitochondrial fission. In sum, short-term HFD changes BM cellularity, resulting in local adipocyte whitening driving a gradual increase and activation of invasive Ly6Chigh monocytes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Parastoo Boroumand

    Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. David C Prescott

    Department of Immunology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Tapas Mukherjee

    Department of Immunology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Philip J Bilan

    Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Wong

    Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Jeff Shen

    Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Ivan Tattoli

    Department of Laboratory Medicine and Pathopysiology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuhuan Zhou

    Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Angela Li

    Research Institute, Toronto General Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Tharini Sivasubramaniyam

    Research Institute, Toronto General Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Nan Shi

    Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Lucie Y Zhu

    Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1048-5377
  13. Zhi Liu

    Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Clinton Robbins

    Department of Laboratory Medicine and Pathophysiology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  15. Dana J Philpott

    Department of Immunology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  16. Stephen E Girardin

    Department of Immunology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  17. Amira Klip

    Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    For correspondence
    amira@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7906-0302

Funding

Canadian Institutes of Health Research FDN-143203 (FDN-143203)

  • Amira Klip

Canadian Institutes of Health Research FDN-14333 (FDN-14333)

  • Dana J Philpott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Florent Ginhoux, Agency for Science Technology and Research, Singapore

Ethics

Animal experimentation: Mouse protocols followed the strictest protocols dictated by the Canadian Institutes of Health Research guidelines and were approved by the animal care committee (Protocol #20011850 to S.E.G. and 483 D.J.P., University of Toronto; and #1000047074 to A.K., The Hospital for Sick Children).

Version history

  1. Received: December 7, 2020
  2. Preprint posted: December 9, 2020 (view preprint)
  3. Accepted: September 6, 2022
  4. Accepted Manuscript published: September 20, 2022 (version 1)
  5. Version of Record published: September 26, 2022 (version 2)

Copyright

© 2022, Boroumand et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,865
    Page views
  • 433
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Parastoo Boroumand
  2. David C Prescott
  3. Tapas Mukherjee
  4. Philip J Bilan
  5. Michael Wong
  6. Jeff Shen
  7. Ivan Tattoli
  8. Yuhuan Zhou
  9. Angela Li
  10. Tharini Sivasubramaniyam
  11. Nan Shi
  12. Lucie Y Zhu
  13. Zhi Liu
  14. Clinton Robbins
  15. Dana J Philpott
  16. Stephen E Girardin
  17. Amira Klip
(2022)
Bone marrow adipocytes drive the development of tissue invasive Ly6Chigh monocytes during obesity
eLife 11:e65553.
https://doi.org/10.7554/eLife.65553

Share this article

https://doi.org/10.7554/eLife.65553

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Cell Biology
    2. Immunology and Inflammation
    Cristina Cacho-Navas, Carmen López-Pujante ... Jaime Millán
    Research Article

    Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell–cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.