1. Chromosomes and Gene Expression
  2. Structural Biology and Molecular Biophysics
Download icon

Archaeal chromatin 'slinkies' are inherently dynamic complexes with deflected DNA wrapping pathways

  1. Samuel Bowerman
  2. Jeff Wereszczynski
  3. Karolin Luger  Is a corresponding author
  1. HHMI and University of Colorado, Boulder, United States
  2. Illinois Institute of Technology, United States
Research Article
  • Cited 4
  • Views 4,092
  • Annotations
Cite this article as: eLife 2021;10:e65587 doi: 10.7554/eLife.65587

Abstract

Eukaryotes and many archaea package their DNA with histones. While the four eukaryotic histones wrap ~147 DNA base pairs into nucleosomes, archaeal histones form 'nucleosome-like' complexes that continuously wind between 60 - 500 base pairs of DNA ('archaeasomes'), suggested by crystal contacts and analysis of cellular chromatin. Solution structures of large archaeasomes (>90 DNA base pairs) have never been directly observed. Here, we utilize molecular dynamics simulations, analytical ultracentrifugation, and cryoEM to structurally characterize the solution state of archaeasomes on longer DNA. Simulations reveal dynamics of increased accessibility without disruption of DNA-binding or tetramerization interfaces. Mg2+ concentration influences compaction, and cryoEM densities illustrate that DNA is wrapped in consecutive substates arranged 90o out-of-plane with one another. Without ATP-dependent remodelers, archaea may leverage these inherent dynamics to balance chromatin packing and accessibility.

Data availability

cryoEM datasets have been uploaded to EMPIAR (EMD-23403, EMD-23404). The pdb files are submitted as supplementary information. MD trajectories will be stored on CU storage resources (PetaLibrary) and made available upon request through file transfer or shipping of external hard drives.

Article and author information

Author details

  1. Samuel Bowerman

    Department of Chemistry and Biochemistry, HHMI and University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeff Wereszczynski

    Department of Physics, Illinois Institute of Technology, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Karolin Luger

    Department of Chemistry and Biochemistry, HHMI and University of Colorado, Boulder, Boulder, United States
    For correspondence
    karolin.luger@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5136-5331

Funding

National Science Foundation (1552743)

  • Jeff Wereszczynski

National Institute of General Medical Sciences (R35GM119647)

  • Jeff Wereszczynski

Howard Hughes Medical Institute (NA)

  • Karolin Luger

National Institute of General Medical Sciences (F32GM137496)

  • Samuel Bowerman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sebastian Deindl, Uppsala University, Sweden

Publication history

  1. Received: December 9, 2020
  2. Accepted: February 16, 2021
  3. Accepted Manuscript published: March 2, 2021 (version 1)
  4. Version of Record published: March 24, 2021 (version 2)

Copyright

© 2021, Bowerman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,092
    Page views
  • 589
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Michele Felletti et al.
    Research Article

    The ability to regulate DNA replication initiation in response to changing nutrient conditions is an important feature of most cell types. In bacteria, DNA replication is triggered by the initiator protein DnaA, which has long been suggested to respond to nutritional changes; nevertheless, the underlying mechanisms remain poorly understood. Here, we report a novel mechanism that adjusts DnaA synthesis in response to nutrient availability in Caulobacter crescentus. By performing a detailed biochemical and genetic analysis of the dnaA mRNA, we identified a sequence downstream of the dnaA start codon that inhibits DnaA translation elongation upon carbon exhaustion. Our data show that the corresponding peptide sequence, but not the mRNA secondary structure or the codon choice, is critical for this response, suggesting that specific amino acids in the growing DnaA nascent chain tune translational efficiency. Our study provides new insights into DnaA regulation and highlights the importance of translation elongation as a regulatory target. We propose that translation regulation by nascent chain sequences, like the one described, might constitute a general strategy for modulating the synthesis rate of specific proteins under changing conditions.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Benoit Roch et al.
    Research Article

    We developed a Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4 deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA Ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core NHEJ DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double KO settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights in the understanding of the clinical manifestations of human XRCC4 deficient condition, in particular its absence of immune deficiency.