1. Neuroscience
Download icon

Tracking the relation between gist and item memory over the course of long-term memory consolidation

  1. Tima Zeng  Is a corresponding author
  2. Alexa Tompary
  3. Anna C Schapiro
  4. Sharon Thompson-Schill
  1. University of Pennsylvania, United States
Research Article
  • Cited 0
  • Views 469
  • Annotations
Cite this article as: eLife 2021;10:e65588 doi: 10.7554/eLife.65588

Abstract

Our experiences in the world support memories not only of specific episodes but also of the generalities (the ‘gist’) across related experiences. It remains unclear how these two types of memories evolve and influence one another over time. In two experiments, 173 human participants encoded spatial locations from a distribution and reported both item memory (specific locations) and gist memory (center for the locations) across one to two months. Experiment 1 demonstrated that after one month, gist memory was preserved relative to item memory, despite a persistent positive correlation between them. Critically, item memories were biased towards the gist over time. Experiment 2 showed that a spatial outlier item changed this relationship and that the extraction of gist is sensitive to the regularities of items. Our results suggest that the gist starts to guide item memories over longer durations as their relative strengths change.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Tima Zeng

    Psychology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    zengtima@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3805-4701
  2. Alexa Tompary

    Psychology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Anna C Schapiro

    Psychology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Anna C Schapiro, Reviewing editor, eLife.
  4. Sharon Thompson-Schill

    Psychology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.

Funding

National Institute of Health (Linguistic and NonLinguistic Functions of Frontal Cortex,R01 DC009209)

  • Sharon Thompson-Schill

National Institute of Health (5R01DC009209-14)

  • Sharon Thompson-Schill

National Institute of Health (5R01DC015359-05)

  • Sharon Thompson-Schill

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: That informed consent, and consent to publish, was obtained. The specific ethical approval obtained from University of Pennsylvania IRB (IRB #705915, Linguistic and Nonlinguistic Functions of Frontal Cortex). The guidelines were followed. The above information was described in the Materials and Methods.

Reviewing Editor

  1. Muireann Irish, University of Sydney, Australia

Publication history

  1. Received: December 9, 2020
  2. Preprint posted: January 7, 2021 (view preprint)
  3. Accepted: July 8, 2021
  4. Accepted Manuscript published: July 14, 2021 (version 1)
  5. Accepted Manuscript updated: July 16, 2021 (version 2)
  6. Version of Record published: August 2, 2021 (version 3)

Copyright

© 2021, Zeng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 469
    Page views
  • 70
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Rene Solano Fonseca et al.
    Research Article Updated

    Concussion is associated with a myriad of deleterious immediate and long-term consequences. Yet the molecular mechanisms and genetic targets promoting the selective vulnerability of different neural subtypes to dysfunction and degeneration remain unclear. Translating experimental models of blunt force trauma in C. elegans to concussion in mice, we identify a conserved neuroprotective mechanism in which reduction of mitochondrial electron flux through complex IV suppresses trauma-induced degeneration of the highly vulnerable dopaminergic neurons. Reducing cytochrome C oxidase function elevates mitochondrial-derived reactive oxygen species, which signal through the cytosolic hypoxia inducing transcription factor, Hif1a, to promote hyperphosphorylation and inactivation of the pyruvate dehydrogenase, PDHE1α. This critical enzyme initiates the Warburg shunt, which drives energetic reallocation from mitochondrial respiration to astrocyte-mediated glycolysis in a neuroprotective manner. These studies demonstrate a conserved process in which glycolytic preconditioning suppresses Parkinson-like hypersensitivity of dopaminergic neurons to trauma-induced degeneration via redox signaling and the Warburg effect.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lloyd Davis et al.
    Tools and Resources Updated

    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.