IL-33 promotes innate lymphoid cell-dependent IFN-γ production required for innate immunity to Toxoplasma gondii

  1. Joseph T Clark
  2. David A Christian
  3. Jodi A Gullicksrud
  4. Joseph A Perry
  5. Jeongho Park
  6. Maxime Jacquet
  7. James C Tarrant
  8. Enrico Radaelli
  9. Jonathan Silver
  10. Christopher A Hunter  Is a corresponding author
  1. University of Pennsylvania, United States
  2. Kangwon National University, Republic of Korea
  3. University Hospital of Basel and University of Basel, Switzerland
  4. AstraZeneca, United States

Abstract

IL-33 is an alarmin required for resistance to the parasite Toxoplasma gondii, but its role in innate resistance to this organism is unclear. Infection with T. gondii promotes increased stromal cell expression of IL-33 and levels of parasite replication correlate with release of IL-33 in affected tissues. In response to infection, a subset of innate lymphoid cells (ILC) emerges composed of IL-33R+ NK cells and ILC1s. In Rag1-/- mice, where NK cells and ILC1 production of IFN-g mediates innate resistance to T. gondii, the loss of the IL-33R resulted in reduced ILC responses and increased parasite replication. Furthermore, administration of IL-33 to Rag1-/- mice resulted in a marked decrease in parasite burden, increased production of IFN-g and the recruitment and expansion of inflammatory monocytes associated with parasite control. These protective effects of exogenous IL-33 were dependent on endogenous IL-12p40 and the ability of IL-33 to enhance ILC production of IFN-g. These results highlight that IL-33 synergizes with IL-12 to promote ILC-mediated resistance to T. gondii.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Joseph T Clark

    Pathobiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  2. David A Christian

    Pathobiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Jodi A Gullicksrud

    Pathobiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Joseph A Perry

    Pathobiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  5. Jeongho Park

    Veterinary Medicine and Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
    Competing interests
    No competing interests declared.
  6. Maxime Jacquet

    Liver Immunology, University Hospital of Basel and University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  7. James C Tarrant

    Pathobiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  8. Enrico Radaelli

    Pathobiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  9. Jonathan Silver

    Respiratory Infllammation and Autoimmunity, AstraZeneca, Gaithersburg, United States
    Competing interests
    Jonathan Silver, Jonathan Silver is a full-time employee and shareholder of AstraZeneca..
  10. Christopher A Hunter

    Pathobiology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    chunter@upenn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3092-1428

Funding

National Institute of Allergy and Infectious Diseases (5R01AI125563-05)

  • Christopher A Hunter

National Institute of Allergy and Infectious Diseases (5T32AI00753223)

  • Christopher A Hunter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#805045) of the University of Pennsylvania

Copyright

© 2021, Clark et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,917
    views
  • 347
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph T Clark
  2. David A Christian
  3. Jodi A Gullicksrud
  4. Joseph A Perry
  5. Jeongho Park
  6. Maxime Jacquet
  7. James C Tarrant
  8. Enrico Radaelli
  9. Jonathan Silver
  10. Christopher A Hunter
(2021)
IL-33 promotes innate lymphoid cell-dependent IFN-γ production required for innate immunity to Toxoplasma gondii
eLife 10:e65614.
https://doi.org/10.7554/eLife.65614

Share this article

https://doi.org/10.7554/eLife.65614

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.