1. Structural Biology and Molecular Biophysics
Download icon

Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2

  1. Yihu Xie  Is a corresponding author
  2. Bradley P Clarke
  3. Yong Joon Kim
  4. Austin L Ivey
  5. Pate S Hill
  6. Yi Shi
  7. Yi Ren  Is a corresponding author
  1. Vanderbilt University, United States
  2. University of Pittsburgh, United States
  3. University of Pittsburgh School of Medicine, United States
Research Article
  • Cited 0
  • Views 1,163
  • Annotations
Cite this article as: eLife 2021;10:e65699 doi: 10.7554/eLife.65699

Abstract

The evolutionarily conserved TREX complex plays central roles during mRNP (messenger ribonucleoprotein) maturation and export from the nucleus to the cytoplasm. In yeast, TREX is composed of the THO sub-complex (Tho2, Hpr1, Tex1, Mft1, and Thp2), the DEAD box ATPase Sub2, and Yra1. Here we present a 3.7 Å cryo-EM structure of the yeast THO•Sub2 complex. The structure reveals the intimate assembly of THO revolving around its largest subunit Tho2. THO stabilizes a semi-open conformation of the Sub2 ATPase via interactions with Tho2. We show that THO interacts with the SR-like protein Gbp2 through both the RS domain and RRM domains of Gbp2. Crosslinking mass spectrometry analysis supports the extensive interactions between THO and Gbp2, further revealing that RRM domains of Gbp2 are in close proximity to the C-terminal domain of Tho2. We propose that THO serves as a landing pad to configure Gbp2 to facilitate its loading onto mRNP.

Data availability

The cryo-EM density maps have been deposited in the Electron Microscopy Data Bank under the accession number EMD-23527. The coordinates of the THO•Sub2 complex has be deposited in the Protein Data Bank under the accession number 7LUV.

The following data sets were generated

Article and author information

Author details

  1. Yihu Xie

    Department of Biochemistry, Vanderbilt University, Nashville, United States
    For correspondence
    yihu.xie@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Bradley P Clarke

    Department of Biochemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9413-9905
  3. Yong Joon Kim

    Department of Cell Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Austin L Ivey

    Department of Biochemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pate S Hill

    Department of Biochemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9550-2713
  6. Yi Shi

    Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2761-8324
  7. Yi Ren

    Department of Biochemistry, Vanderbilt University, Nashville, United States
    For correspondence
    yi.ren@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4531-0910

Funding

National Institute of General Medical Sciences (GM133743)

  • Yihu Xie
  • Bradley P Clarke
  • Austin L Ivey
  • Pate S Hill
  • Yi Ren

National Institute of General Medical Sciences (GM137905)

  • Yong Joon Kim
  • Yi Shi

National Cancer Institute (T32CA119925)

  • Bradley P Clarke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karsten Weis, ETH Zurich, Switzerland

Publication history

  1. Received: December 12, 2020
  2. Accepted: March 30, 2021
  3. Accepted Manuscript published: March 31, 2021 (version 1)
  4. Version of Record published: April 13, 2021 (version 2)

Copyright

© 2021, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,163
    Page views
  • 202
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Paul Fischer et al.
    Research Article

    Enzymerhodopsins represent a recently discovered class of rhodopsins which includes histidine kinase rhodopsin, rhodopsin phosphodiesterases and rhodopsin guanylyl cyclases (RGCs). The regulatory influence of the rhodopsin domain on the enzyme activity is only partially understood and holds the key for a deeper understanding of intra-molecular signaling pathways. Here we present a UV-Vis and FTIR study about the light-induced dynamics of a RGC from the fungus Catenaria anguillulae, which provides insights into the catalytic process. After the spectroscopic characterization of the late rhodopsin photoproducts, we analyzed truncated variants and revealed the involvement of the cytosolic N-terminus in the structural rearrangements upon photo-activation of the protein. We tracked the catalytic reaction of RGC and the free GC domain independently by UV-light induced release of GTP from the photolabile NPE-GTP substrate. Our results show substrate binding to the dark-adapted RGC and GC alike and reveal differences between the constructs attributable to the regulatory influence of the rhodopsin on the conformation of the binding pocket. By monitoring the phosphate rearrangement during cGMP and pyrophosphate formation in light-activated RGC, we were able to confirm the M state as the active state of the protein. The described setup and experimental design enable real-time monitoring of substrate turnover in light-activated enzymes on a molecular scale, thus opening the pathway to a deeper understanding of enzyme activity and protein-protein interactions.

    1. Physics of Living Systems
    2. Structural Biology and Molecular Biophysics
    Daniel Porto et al.
    Research Article Updated

    The force-induced unfolding and refolding of proteins is speculated to be a key mechanism in the sensing and transduction of mechanical signals in the living cell. Yet, little evidence has been gathered for its existence in vivo. Prominently, stretch-induced unfolding is postulated to be the activation mechanism of the twitchin/titin family of autoinhibited sarcomeric kinases linked to the mechanical stress response of muscle. To test the occurrence of mechanical kinase activation in living working muscle, we generated transgenic Caenorhabditis elegans expressing twitchin containing FRET moieties flanking the kinase domain and developed a quantitative technique for extracting FRET signals in freely moving C. elegans, using tracking and simultaneous imaging of animals in three channels (donor fluorescence, acceptor fluorescence, and transmitted light). Computer vision algorithms were used to extract fluorescence signals and muscle contraction states in each frame, in order to obtain fluorescence and body curvature measurements with spatial and temporal precision in vivo. The data revealed statistically significant periodic changes in FRET signals during muscle activity, consistent with a periodic change in the conformation of twitchin kinase. We conclude that stretch-unfolding of twitchin kinase occurs in the active muscle, whereby mechanical activity titrates the signaling pathway of this cytoskeletal kinase. We anticipate that the methods we have developed here could be applied to obtaining in vivo evidence for force-induced conformational changes or elastic behavior of other proteins not only in C. elegans but in other animals in which there is optical transparency (e.g., zebrafish).