Inhibiting USP16 rescues stem cell aging and memory in an Alzheimer's model
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease observed with aging that represents the most common form of dementia. To date, therapies targeting end-stage disease plaques, tangles, or inflammation have limited efficacy. Therefore, we set out to identify a potential earlier targetable phenotype. Utilizing a mouse model of AD and human fetal cells harboring mutant amyloid precursor protein, we show cell intrinsic neural precursor cell (NPC) dysfunction precedes widespread inflammation and amyloid plaque pathology, making it the earliest defect in the evolution of the disease. We demonstrate that reversing impaired NPC self-renewal via genetic reduction of USP16, a histone modifier and critical physiological antagonist of the Polycomb Repressor Complex 1, can prevent downstream cognitive defects and decrease astrogliosis in vivo. Reduction of USP16 led to decreased expression of senescence gene Cdkn2a and mitigated aberrant regulation of the BMP pathway, a previously unknown function of USP16. Thus, we reveal USP16 as a novel target in an AD model that can both ameliorate the NPC defect and rescue memory and learning through its regulation of both Cdkn2a and BMP signaling.'
Data availability
Datasets generated are available on Dryad Digital Repository (doi:10.5061/dryad.mpg4f4qz0 and doi.org/10.5061/dryad.vx0k6djtf)
-
Single-Cell RNA-sequencing of neural precursor cells from an Alzheimer's mouse model, wild-type mice, and Alzheimer's mice rescued with Usp16 haploinsufficiencyDryad Digital Repository, doi:10.5061/dryad.mpg4f4qz0.
-
Microarray analysis of subventricular zone, hippocampus, and cortex from an Alzheimer's mouse model, wild-type mice, and Alzheimer's mice rescued with Usp16 haploinsufficiencyDryad Digital Repository, doi:10.5061/dryad.vx0k6djtf.
Article and author information
Author details
Funding
California Institute of Regenerative Medicine (Graduate Student Fellowship)
- Elizabeth Y Chen
Chan Zucherberg Foundationg Biohub Initiative
- Elizabeth Y Chen
- Robert C Jones
- Sai Saroja Kolluru
- Stephen R Quake
NIH (1R01AG059712-01)
- Felicia Reinitz
- Elizabeth Y Chen
- Benedetta Nicolis di Robilant
- Jane Antony
- Neha Gubbi
- Dalong Qian
- Michael F Clarke
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Mice were housed in accordance with the guidelines of Institutional AnimalCare Use Committee. All animal procedures and behavioral studies involved in this manuscript are compliant to Stanford Administrative Panel on Laboratory Animal Care (APLAC) Protocol 10868 pre-approved by the Stanford Institutional Animal Care and Use Committee (IACUC).
Copyright
© 2022, Reinitz et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,247
- views
-
- 375
- downloads
-
- 7
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Stem Cells and Regenerative Medicine
Adult mammals, unlike some lower organisms, lack the ability to regenerate damaged hearts through cardiomyocytes (CMs) dedifferentiation into cells with regenerative capacity. Developing conditions to induce such naturally unavailable cells with potential to proliferate and differentiate into CMs, that is, regenerative cardiac cells (RCCs), in mammals will provide new insights and tools for heart regeneration research. In this study, we demonstrate that a two-compound combination, CHIR99021 and A-485 (2C), effectively induces RCCs from human embryonic stem cell-derived TNNT2+ CMs in vitro, as evidenced by lineage tracing experiments. Functional analysis shows that these RCCs express a broad spectrum of cardiogenesis genes and have the potential to differentiate into functional CMs, endothelial cells, and smooth muscle cells. Importantly, similar results were observed in neonatal rat CMs both in vitro and in vivo. Remarkably, administering 2C in adult mouse hearts significantly enhances survival and improves heart function post-myocardial infarction. Mechanistically, CHIR99021 is crucial for the transcriptional and epigenetic activation of genes essential for RCC development, while A-485 primarily suppresses H3K27Ac and particularly H3K9Ac in CMs. Their synergistic effect enhances these modifications on RCC genes, facilitating the transition from CMs to RCCs. Therefore, our findings demonstrate the feasibility and reveal the mechanisms of pharmacological induction of RCCs from endogenous CMs, which could offer a promising regenerative strategy to repair injured hearts.
-
- Stem Cells and Regenerative Medicine
Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nucleus atlas of the periosteum at steady state and of the fracture site during the early stages of bone repair (https://fracture-repair-atlas.cells.ucsc.edu). We identified periosteal SSPCs expressing stemness markers (Pi16 and Ly6a/SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt, and the circadian clock signaling, respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.