Multiplexed mRNA assembly into ribonucleoprotein particles plays an operon-like role in the control of yeast cell physiology

  1. Rohini R Nair
  2. Dimitry Zabezhinsky
  3. Rita Gelin-Licht
  4. Brian J Haas
  5. Michael CA Dyhr
  6. Hannah S Sperber
  7. Chad Nusbaum
  8. Jeffrey E Gerst  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Broad Institute of MIT and Harvard, United States

Abstract

Prokaryotes utilize polycistronic messages (operons) to co-translate proteins involved in the same biological processes. Whether eukaryotes achieve similar regulation by selectively assembling and translating monocistronic messages derived from different chromosomes is unknown. We employed transcript-specific RNA pulldowns and RNA-seq/RT-PCR to identify yeast mRNAs that co-precipitate as ribonucleoprotein (RNP) complexes. Consistent with the hypothesis of eukaryotic RNA operons, mRNAs encoding components of the mating pathway, heat shock proteins, and mitochondrial outer membrane proteins multiplex in trans, forming discrete mRNP complexes (called transperons). Chromatin-capture and allele tagging experiments reveal that genes encoding multiplexed mRNAs physically interact, thus, RNA assembly may result from co-regulated gene expression. Transperon assembly and function depends upon histone H4 and depletion leads to defects in RNA multiplexing, decreased pheromone responsiveness and mating, and increased heat shock sensitivity. We propose that intergenic associations and non-canonical histone H4 functions contribute to transperon formation in eukaryotic cells and regulate cell physiology.

Data availability

All data is available within the text, figures, and tables of the manuscript

Article and author information

Author details

  1. Rohini R Nair

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  2. Dimitry Zabezhinsky

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  3. Rita Gelin-Licht

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  4. Brian J Haas

    Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Michael CA Dyhr

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  6. Hannah S Sperber

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  7. Chad Nusbaum

    Technology Labs, Broad Institute of MIT and Harvard, Cambridge, MA, United States
    Competing interests
    Chad Nusbaum, Chad Nusbaum is affiliated with Cellarity Inc. The author has no financial interests to declare..
  8. Jeffrey E Gerst

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    jeffrey.gerst@weizmann.ac.il
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8411-6881

Funding

German-Israeli Foundation for Scientific Research and Development (I-1190-96.13/2012)

  • Jeffrey E Gerst

Minerva Foundation (711130)

  • Jeffrey E Gerst

Astrachan Olga Klein Fund, Weizmann Institute

  • Jeffrey E Gerst

National Institutes of Health (NHGRI U54HG00306)

  • Chad Nusbaum

Israel Council of Higher Education

  • Rita Gelin-Licht

Israel Science Foundation (578/18)

  • Jeffrey E Gerst

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karsten Weis, ETH Zurich, Switzerland

Version history

  1. Received: December 23, 2020
  2. Accepted: May 2, 2021
  3. Accepted Manuscript published: May 4, 2021 (version 1)
  4. Accepted Manuscript updated: May 7, 2021 (version 2)
  5. Version of Record published: May 20, 2021 (version 3)

Copyright

© 2021, Nair et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,359
    views
  • 300
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rohini R Nair
  2. Dimitry Zabezhinsky
  3. Rita Gelin-Licht
  4. Brian J Haas
  5. Michael CA Dyhr
  6. Hannah S Sperber
  7. Chad Nusbaum
  8. Jeffrey E Gerst
(2021)
Multiplexed mRNA assembly into ribonucleoprotein particles plays an operon-like role in the control of yeast cell physiology
eLife 10:e66050.
https://doi.org/10.7554/eLife.66050

Share this article

https://doi.org/10.7554/eLife.66050

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.