Multiplexed mRNA assembly into ribonucleoprotein particles plays an operon-like role in the control of yeast cell physiology

  1. Rohini R Nair
  2. Dimitry Zabezhinsky
  3. Rita Gelin-Licht
  4. Brian J Haas
  5. Michael CA Dyhr
  6. Hannah S Sperber
  7. Chad Nusbaum
  8. Jeffrey E Gerst  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Broad Institute of MIT and Harvard, United States

Abstract

Prokaryotes utilize polycistronic messages (operons) to co-translate proteins involved in the same biological processes. Whether eukaryotes achieve similar regulation by selectively assembling and translating monocistronic messages derived from different chromosomes is unknown. We employed transcript-specific RNA pulldowns and RNA-seq/RT-PCR to identify yeast mRNAs that co-precipitate as ribonucleoprotein (RNP) complexes. Consistent with the hypothesis of eukaryotic RNA operons, mRNAs encoding components of the mating pathway, heat shock proteins, and mitochondrial outer membrane proteins multiplex in trans, forming discrete mRNP complexes (called transperons). Chromatin-capture and allele tagging experiments reveal that genes encoding multiplexed mRNAs physically interact, thus, RNA assembly may result from co-regulated gene expression. Transperon assembly and function depends upon histone H4 and depletion leads to defects in RNA multiplexing, decreased pheromone responsiveness and mating, and increased heat shock sensitivity. We propose that intergenic associations and non-canonical histone H4 functions contribute to transperon formation in eukaryotic cells and regulate cell physiology.

Data availability

All data is available within the text, figures, and tables of the manuscript

Article and author information

Author details

  1. Rohini R Nair

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  2. Dimitry Zabezhinsky

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  3. Rita Gelin-Licht

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  4. Brian J Haas

    Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Michael CA Dyhr

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  6. Hannah S Sperber

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
  7. Chad Nusbaum

    Technology Labs, Broad Institute of MIT and Harvard, Cambridge, MA, United States
    Competing interests
    Chad Nusbaum, Chad Nusbaum is affiliated with Cellarity Inc. The author has no financial interests to declare..
  8. Jeffrey E Gerst

    Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    jeffrey.gerst@weizmann.ac.il
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8411-6881

Funding

German-Israeli Foundation for Scientific Research and Development (I-1190-96.13/2012)

  • Jeffrey E Gerst

Minerva Foundation (711130)

  • Jeffrey E Gerst

Astrachan Olga Klein Fund, Weizmann Institute

  • Jeffrey E Gerst

National Institutes of Health (NHGRI U54HG00306)

  • Chad Nusbaum

Israel Council of Higher Education

  • Rita Gelin-Licht

Israel Science Foundation (578/18)

  • Jeffrey E Gerst

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Nair et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,524
    views
  • 311
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rohini R Nair
  2. Dimitry Zabezhinsky
  3. Rita Gelin-Licht
  4. Brian J Haas
  5. Michael CA Dyhr
  6. Hannah S Sperber
  7. Chad Nusbaum
  8. Jeffrey E Gerst
(2021)
Multiplexed mRNA assembly into ribonucleoprotein particles plays an operon-like role in the control of yeast cell physiology
eLife 10:e66050.
https://doi.org/10.7554/eLife.66050

Share this article

https://doi.org/10.7554/eLife.66050

Further reading

    1. Cell Biology
    Mitsuhiro Abe, Masataka Yanagawa ... Yasushi Sako
    Research Article

    Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.

    1. Cell Biology
    Wonjo Jang, Kanishka Senarath ... Nevin A Lambert
    Tools and Resources

    Classical G-protein-coupled receptor (GPCR) signaling takes place in response to extracellular stimuli and involves receptors and heterotrimeric G proteins located at the plasma membrane. It has recently been established that GPCR signaling can also take place from intracellular membrane compartments, including endosomes that contain internalized receptors and ligands. While the mechanisms of GPCR endocytosis are well understood, it is not clear how well internalized receptors are supplied with G proteins. To address this gap, we use gene editing, confocal microscopy, and bioluminescence resonance energy transfer to study the distribution and trafficking of endogenous G proteins. We show here that constitutive endocytosis is sufficient to supply newly internalized endocytic vesicles with 20–30% of the G protein density found at the plasma membrane. We find that G proteins are present on early, late, and recycling endosomes, are abundant on lysosomes, but are virtually undetectable on the endoplasmic reticulum, mitochondria, and the medial-trans Golgi apparatus. Receptor activation does not change heterotrimer abundance on endosomes. Our findings provide a subcellular map of endogenous G protein distribution, suggest that G proteins may be partially excluded from nascent endocytic vesicles, and are likely to have implications for GPCR signaling from endosomes and other intracellular compartments.