Mechanical stretch scales centriole number to apical area via Piezo1 in multiciliated cells

  1. Saurabh Suhas Kulkarni  Is a corresponding author
  2. Jonathan Marquez
  3. Priya P Date
  4. Rosa Ventrella
  5. Brian Mitchell
  6. Mustafa Khokha  Is a corresponding author
  1. University of Virginia, United States
  2. Yale University, United States
  3. Northwestern University, United States
  4. Yale School of Medicine, United States

Abstract

How cells count and regulate organelle number is a fundamental question in cell biology. For example, most cells restrict centrioles to two in number and assemble one cilium; however, multiciliated cells (MCCs) synthesize hundreds of centrioles to assemble multiple cilia. Aberration in centriole/cilia number impairs MCC function and can lead to pathological outcomes. Yet how MCCs control centriole number remains unknown. Using Xenopus, we demonstrate that centriole number scales with apical area over a remarkable 40-fold change in size. We find that tensile forces that shape the apical area also trigger centriole amplification based on both cell stretching experiments and disruption of embryonic elongation. Unexpectedly, Piezo1, a mechanosensitive ion channel, localizes near each centriole suggesting a potential role in centriole amplification. Indeed, depletion of Piezo1 affects centriole amplification and disrupts its correlation with the apical area in a tension dependent manner. Thus, mechanical forces calibrate cilia/centriole number to the MCC apical area via Piezo1. Our results provide new perspectives to study organelle number control essential for optimal cell function.

Data availability

Data is attached as a source files.

Article and author information

Author details

  1. Saurabh Suhas Kulkarni

    Cell Biology, University of Virginia, Charlottesville, United States
    For correspondence
    sk4xq@virginia.edu
    Competing interests
    No competing interests declared.
  2. Jonathan Marquez

    Yale School of Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3377-7599
  3. Priya P Date

    Cell Biology, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  4. Rosa Ventrella

    Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Brian Mitchell

    Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  6. Mustafa Khokha

    Pediatrics, Yale School of Medicine, New Haven, United States
    For correspondence
    Mustafa.khokha@yale.edu
    Competing interests
    Mustafa Khokha, is a founder of Victory Genomics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9846-7076

Funding

NHLBI (1K99 HL133606 and 5R00HL133606)

  • Saurabh Suhas Kulkarni

NICHD (R01HD102186)

  • Mustafa Khokha

Yale MSTP NIH (T32GM007205)

  • Jonathan Marquez

Yale Predoctoral Program in cellular and Molecular Biology (T32GM007223)

  • Jonathan Marquez

Paul and Daisy Soros Fellowship for New Americans

  • Jonathan Marquez

NIH (T32AR060710)

  • Rosa Ventrella

NIGMS (R01GM089970)

  • Brian Mitchell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeremy F Reiter, University of California, San Francisco, United States

Ethics

Animal experimentation: Xenopus tropicalis were housed and cared for in our aquatics facility according to established protocols approved by the Yale Institutional Animal Care and Use Committee (IACUC, protocol number - 2021-11035) and University of Virginia IACUC (protocol number - 42951119). Xenopus laevis were housed and cared for according to established animal care protocol approved by Northwestern University IACUC (protocol number - IS00006468).

Version history

  1. Received: December 30, 2020
  2. Accepted: June 28, 2021
  3. Accepted Manuscript published: June 29, 2021 (version 1)
  4. Version of Record published: July 9, 2021 (version 2)

Copyright

© 2021, Kulkarni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,757
    views
  • 441
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Saurabh Suhas Kulkarni
  2. Jonathan Marquez
  3. Priya P Date
  4. Rosa Ventrella
  5. Brian Mitchell
  6. Mustafa Khokha
(2021)
Mechanical stretch scales centriole number to apical area via Piezo1 in multiciliated cells
eLife 10:e66076.
https://doi.org/10.7554/eLife.66076

Share this article

https://doi.org/10.7554/eLife.66076

Further reading

    1. Cancer Biology
    2. Cell Biology
    Dongyue Jiao, Huiru Sun ... Kun Gao
    Research Article

    Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.