Dependency of human and murine LKB1-inactivated lung cancer on aberrant CRTC-CREB activation

  1. Xin Zhou
  2. Jennifer W Li
  3. Zirong Chen
  4. Wei Ni
  5. Xuehui Li
  6. Rongqiang Yang
  7. Huangxuan Shen
  8. Jian Liu
  9. Franco J DeMayo
  10. Jianrong Lu
  11. Frederic J Kaye
  12. Lizi Wu  Is a corresponding author
  1. University of Florida, United States
  2. Sun Yat-sen University, China
  3. Zhejiang University, China
  4. NIH, United States
  5. University of Florida College of Medicine, United States

Abstract

Lung cancer with loss-of-function of the LKB1 tumor suppressor is a common aggressive subgroup with no effective therapies. LKB1-deficiency induces constitutive activation of cAMP/CREB-mediated transcription by a family of three CREB-regulated transcription coactivators (CRTC1-3). However, the significance and mechanism of CRTC activation in promoting the aggressive phenotype of LKB1-null cancer remain poorly characterized. Here we observed overlapping CRTC expression patterns and mild growth phenotypes of individual CRTC-knockouts in lung cancer, suggesting functional redundancy of CRTC1-3. We consequently designed a dominant-negative mutant (dnCRTC) to block all three CRTCs to bind and co-activate CREB. Expression of dnCRTC efficiently inhibited the aberrantly activated cAMP/CREB-mediated oncogenic transcriptional program induced by LKB1-deficiency, and specifically blocked the growth of human and murine LKB1-inactivated lung cancer. Collectively, this study provides direct proof for an essential role of the CRTC-CREB activation in promoting the malignant phenotypes of LKB1-null lung cancer and proposes the CRTC-CREB interaction interface as a novel therapeutic target.

Data availability

The transcriptomic data were deposited in the NCBI GEO database GSE157722.All data generated or analyzed for this study are included in the manuscript.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xin Zhou

    Molecular Genetics & Microbiology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer W Li

    Department of Medicine, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zirong Chen

    Molecular Genetics & Microbiology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Ni

    Molecular Genetics & Microbiology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xuehui Li

    Molecular Genetics & Microbiology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rongqiang Yang

    Molecular Genetics & Microbiology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Huangxuan Shen

    Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jian Liu

    ZJU-UoE Institute, Zhejiang University, Haining, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Franco J DeMayo

    NIH, Research Triangle Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jianrong Lu

    Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4969-6040
  11. Frederic J Kaye

    Medicine, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Lizi Wu

    Molecular Genetics & Microbiology, University of Florida, Gainesville, United States
    For correspondence
    lzwu@ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0076-2617

Funding

National Cancer Institute (R01CA234351)

  • Lizi Wu

National Institute of Dental and Craniofacial Research (R01DE023641)

  • Lizi Wu

UF Health Cancer Center

  • Lizi Wu

National Institute of Environmental Health Sciences (Z1AES103311-01)

  • Franco J DeMayo

University of Florida Gatorade Trust

  • Frederic J Kaye

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal studies were performed following a protocol approved by the IACUC (Institutional Animal Care & Use Committee) of the University of Florida (201810386). All animals were housed, cared for, and used in an animal care facility at the University of Florida that is fully accredited by the Association for the Assessment and Accreditation of Laboratory Animal Care International (AAALAC) program in compliance with the Guide for the Care and Use of Laboratory Animals, the Animal Welfare Act and other applicable state and local regulations.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,912
    views
  • 355
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin Zhou
  2. Jennifer W Li
  3. Zirong Chen
  4. Wei Ni
  5. Xuehui Li
  6. Rongqiang Yang
  7. Huangxuan Shen
  8. Jian Liu
  9. Franco J DeMayo
  10. Jianrong Lu
  11. Frederic J Kaye
  12. Lizi Wu
(2021)
Dependency of human and murine LKB1-inactivated lung cancer on aberrant CRTC-CREB activation
eLife 10:e66095.
https://doi.org/10.7554/eLife.66095

Share this article

https://doi.org/10.7554/eLife.66095

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.