An epigenetic switch regulates the ontogeny of AXL positive/EGFR-TKI resistant cells by modulating miR-335 expression

Abstract

Despite current advancements in research and therapeutics, lung cancer remains the leading cause of cancer-related mortality worldwide. This is mainly due to the resistance that patients develop against chemotherapeutic agents over the course of treatment. In the context of non-small cell lung cancers (NSCLC) harboring EGFR oncogenic mutations, augmented levels of AXL and GAS6 have been found to drive resistance to EGFR tyrosine kinase inhibitors such as Erlotinib and Osimertinib in certain tumors with mesenchymal-like features. By studying the ontogeny of AXL-positive cells, we have identified a novel non-genetic mechanism of drug resistance based on cell-state transition. We demonstrate that AXL-positive cells are already present as a sub-population of cancer cells in Erlotinib-naïve tumors and tumor-derived cell lines, and that the expression of AXL is regulated through a stochastic mechanism centered on the epigenetic regulation of miR-335. The existence of a cell-intrinsic program through which AXL-positive/Erlotinib-resistant cells emerge infers the need of treating tumors harboring EGFR-oncogenic mutations upfront with combinatorial treatments targeting both AXL-negative and AXL-positive cancer cells.

Data availability

The data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Polona Safaric Tepes

    Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Debjani Pal

    Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Trine Lindsted

    Cancer Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ingrid Ibarra

    Cancer Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Amaia Lujambio

    Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2798-1481
  6. Vilma Jimenez Sabinina

    Cancer Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Serif Senturk

    Cancer Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Madison Miller

    Cancer Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Navya Korimerla

    Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jiahao Huang

    Cancer Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Lawrence Glassman

    thoracic surgery, Northwell Health Long Island, New Hyde Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Paul Lee

    thoracic surgery, Northwell Health Long Island, New Hyde Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. David Zeltsman

    thoracic surgery, Northwell Health Long Island, New Hyde Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Kevin Hyman

    thoracic surgery, Northwell Health Long Island, New Hyde Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Michael Esposito

    thoracic surgery, Northwell Health Long Island, New Hyde Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Greg Hannon

    School of Biological Sciences, Cold Spring Harbor Laboratory, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Raffaella Sordella

    Cancer Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    sordella@cshl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9745-1227

Funding

No external funding was received for this work.

Ethics

Human subjects: The collection of human lung tissue samples and blood for this study was covered by Northwell Health/Cold Spring Harbor Laboratory IRB #TDP-TAP 1607 (Raffaella Sordella/10/11/16 ). The samples were acquired from patients already undergoing thoracic procedures (e.g. surgical tumor resection, biopsy) at Huntington Hospital. All study participants provided informed consent for the use of their lung tissue and blood for research purposes. Participants were informed of study aims, the potential risks and benefits of participation, and that any discoveries facilitated by the analysis of their tissues might be published. The participants were informed that their names would not be associated their samples in any publication or presentation of research findings.

Copyright

© 2021, Safaric Tepes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,282
    views
  • 310
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Polona Safaric Tepes
  2. Debjani Pal
  3. Trine Lindsted
  4. Ingrid Ibarra
  5. Amaia Lujambio
  6. Vilma Jimenez Sabinina
  7. Serif Senturk
  8. Madison Miller
  9. Navya Korimerla
  10. Jiahao Huang
  11. Lawrence Glassman
  12. Paul Lee
  13. David Zeltsman
  14. Kevin Hyman
  15. Michael Esposito
  16. Greg Hannon
  17. Raffaella Sordella
(2021)
An epigenetic switch regulates the ontogeny of AXL positive/EGFR-TKI resistant cells by modulating miR-335 expression
eLife 10:e66109.
https://doi.org/10.7554/eLife.66109

Share this article

https://doi.org/10.7554/eLife.66109

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.