Post-transcriptional repression of circadian component CLOCK regulates cancer-stemness in murine breast cancer cells

Abstract

Disruption of the circadian clock machinery in cancer cells is implicated in tumor malignancy. Studies on cancer therapy reveal the presence of heterogeneous cells, including breast cancer stem-like cells (BCSCs), in breast tumors. BCSCs are often characterized by high aldehyde dehydrogenase (ALDH) activity, associated with the malignancy of cancers. In this study, we demonstrated the negative regulation of ALDH activity by the major circadian component CLOCK in murine breast cancer 4T1 cells. The expression of CLOCK was repressed in high-ALDH-activity 4T1, and enhancement of CLOCK expression abrogated their stemness properties, such as tumorigenicity and invasive potential. Furthermore, reduced expression of CLOCK in high-ALDH-activity 4T1 was post-transcriptionally regulated by microRNA: miR-182. Knockout of miR-182 restored the expression of CLOCK, resulted in preventing tumor growth. Our findings suggest that increased expression of CLOCK in BCSCs by targeting post-transcriptional regulation overcame stemness-related malignancy and may be a novel strategy for breast cancer treatments.

Data availability

The full data of microarray analysis have been deposited in National Center for Biotechnology Information gene expression omnibus (miRNA microarray, Accession#:GSE157655; mRNA microarray, Accession#:GSE103598). All data generated or analysed during this study are included in the manuscript and supporting files. Source data files of the quantitative data have been provided for all figures.

The following previously published data sets were used

Article and author information

Author details

  1. Takashi Ogino

    Pharmaceutics, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Naoya Matsunaga

    Glocal Healthcare Science, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Takahiro Tanaka

    Pharmaceutics, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Tomohito Tanihara

    Pharmaceutics, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Hideki Terajima

    Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Hikari Yoshitane

    Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6319-3354
  7. Yoshitaka Fukada

    Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Akito Tsuruta

    Pharmaceutics, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Satoru Koyanagi

    Glocal Healthcare Science, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Shigehiro Ohdo

    Pharmaceutics, Kyushu University, Higashi-ku, Japan
    For correspondence
    ohdo@phar.kyushu-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4795-9764

Funding

Ministry of Education, Culture, Sports, Science and Technology (Grant-in-Aid for Scientific Research A,16H02636)

  • Shigehiro Ohdo

Japan Agency for Medical Research and Development (JP20am0101091)

  • Shigehiro Ohdo

Japan Agency for Medical Research and Development (JP21am0101091)

  • Shigehiro Ohdo

Ministry of Education, Culture, Sports, Science and Technology (Challenging Exploratory Research,17H06262)

  • Shigehiro Ohdo

Ministry of Education, Culture, Sports, Science and Technology (Challenging Exploratory Research,20K21484)

  • Satoru Koyanagi

Ministry of Education, Culture, Sports, Science and Technology (Challenging Exploratory Research,20K21901)

  • Naoya Matsunaga

Ministry of Education, Culture, Sports, Science and Technology (Scientific Research B,18H03192)

  • Naoya Matsunaga

Ministry of Education, Culture, Sports, Science and Technology (Specially Promoted Research,17H06096)

  • Yoshitaka Fukada

Ministry of Education, Culture, Sports, Science and Technology (Scientific Research B,25440041)

  • Hikari Yoshitane

Japan Agency for Medical Research and Development (PRIME,17937210)

  • Hikari Yoshitane

Ministry of Education, Culture, Sports, Science and Technology (JSPS KAKENHI Grant,17J01969)

  • Takashi Ogino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were performed after approval and following the guidelines of Kyushu University (approval number: A20-131-0).

Copyright

© 2021, Ogino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,237
    views
  • 272
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.66155

Further reading

    1. Cancer Biology
    2. Physics of Living Systems
    Joseph Ackermann, Chiara Bernard ... Martine D Ben Amar
    Research Article

    The tumor stroma consists mainly of extracellular matrix, fibroblasts, immune cells, and vasculature. Its structure and functions are altered during malignancy: tumor cells transform fibroblasts into cancer-associated fibroblasts, which exhibit immunosuppressive activities on which growth and metastasis depend. These include exclusion of immune cells from the tumor nest, cancer progression, and inhibition of T-cell-based immunotherapy. To understand these complex interactions, we measure the density of different cell types in the stroma using immunohistochemistry techniques on tumor samples from lung cancer patients. We incorporate these data into a minimal dynamical system, explore the variety of outcomes, and finally establish a spatio-temporal model that explains the cell distribution. We reproduce that cancer-associated fibroblasts act as a barrier to tumor expansion, but also reduce the efficiency of the immune response. Our conclusion is that the final outcome depends on the parameter values for each patient and leads to either tumor invasion, persistence, or eradication as a result of the interplay between cancer cell growth, T-cell cytotoxicity, and fibroblast activity. However, despite the existence of a wide range of scenarios, distinct trajectories, and patterns allow quantitative predictions that may help in the selection of new therapies and personalized protocols.

    1. Cancer Biology
    Huan Fang, Huichun Liang ... Ceshi Chen
    Research Article

    In the clinic, anti-tumor angiogenesis is commonly employed for treating recurrent, metastatic, drug-resistant triple-negative, and advanced breast cancer. Our previous research revealed that the deubiquitinase STAMBPL1 enhances the stability of MKP-1, thereby promoting cisplatin resistance in breast cancer. In this study, we discovered that STAMBPL1 could upregulate the expression of the hypoxia-inducible factor HIF1α in breast cancer cells. Therefore, we investigated whether STAMBPL1 promotes tumor angiogenesis. We demonstrated that STAMBPL1 increased HIF1A transcription in a non-enzymatic manner, thereby activating the HIF1α/VEGFA signaling pathway to facilitate triple-negative breast cancer angiogenesis. Through RNA-seq analysis, we identified the transcription factor GRHL3 as a downstream target of STAMBPL1 that is responsible for mediating HIF1A transcription. Furthermore, we discovered that STAMBPL1 regulates GRHL3 transcription by interacting with the transcription factor FOXO1. These findings shed light on the role and mechanism of STAMBPL1 in the pathogenesis of breast cancer, offering novel targets and avenues for the treatment of triple-negative and advanced breast cancer.