Post-transcriptional repression of circadian component CLOCK regulates cancer-stemness in murine breast cancer cells

Abstract

Disruption of the circadian clock machinery in cancer cells is implicated in tumor malignancy. Studies on cancer therapy reveal the presence of heterogeneous cells, including breast cancer stem-like cells (BCSCs), in breast tumors. BCSCs are often characterized by high aldehyde dehydrogenase (ALDH) activity, associated with the malignancy of cancers. In this study, we demonstrated the negative regulation of ALDH activity by the major circadian component CLOCK in murine breast cancer 4T1 cells. The expression of CLOCK was repressed in high-ALDH-activity 4T1, and enhancement of CLOCK expression abrogated their stemness properties, such as tumorigenicity and invasive potential. Furthermore, reduced expression of CLOCK in high-ALDH-activity 4T1 was post-transcriptionally regulated by microRNA: miR-182. Knockout of miR-182 restored the expression of CLOCK, resulted in preventing tumor growth. Our findings suggest that increased expression of CLOCK in BCSCs by targeting post-transcriptional regulation overcame stemness-related malignancy and may be a novel strategy for breast cancer treatments.

Data availability

The full data of microarray analysis have been deposited in National Center for Biotechnology Information gene expression omnibus (miRNA microarray, Accession#:GSE157655; mRNA microarray, Accession#:GSE103598). All data generated or analysed during this study are included in the manuscript and supporting files. Source data files of the quantitative data have been provided for all figures.

The following previously published data sets were used

Article and author information

Author details

  1. Takashi Ogino

    Pharmaceutics, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Naoya Matsunaga

    Glocal Healthcare Science, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Takahiro Tanaka

    Pharmaceutics, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Tomohito Tanihara

    Pharmaceutics, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Hideki Terajima

    Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Hikari Yoshitane

    Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6319-3354
  7. Yoshitaka Fukada

    Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Akito Tsuruta

    Pharmaceutics, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Satoru Koyanagi

    Glocal Healthcare Science, Kyushu University, Higashi-ku, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Shigehiro Ohdo

    Pharmaceutics, Kyushu University, Higashi-ku, Japan
    For correspondence
    ohdo@phar.kyushu-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4795-9764

Funding

Ministry of Education, Culture, Sports, Science and Technology (Grant-in-Aid for Scientific Research A,16H02636)

  • Shigehiro Ohdo

Japan Agency for Medical Research and Development (JP20am0101091)

  • Shigehiro Ohdo

Japan Agency for Medical Research and Development (JP21am0101091)

  • Shigehiro Ohdo

Ministry of Education, Culture, Sports, Science and Technology (Challenging Exploratory Research,17H06262)

  • Shigehiro Ohdo

Ministry of Education, Culture, Sports, Science and Technology (Challenging Exploratory Research,20K21484)

  • Satoru Koyanagi

Ministry of Education, Culture, Sports, Science and Technology (Challenging Exploratory Research,20K21901)

  • Naoya Matsunaga

Ministry of Education, Culture, Sports, Science and Technology (Scientific Research B,18H03192)

  • Naoya Matsunaga

Ministry of Education, Culture, Sports, Science and Technology (Specially Promoted Research,17H06096)

  • Yoshitaka Fukada

Ministry of Education, Culture, Sports, Science and Technology (Scientific Research B,25440041)

  • Hikari Yoshitane

Japan Agency for Medical Research and Development (PRIME,17937210)

  • Hikari Yoshitane

Ministry of Education, Culture, Sports, Science and Technology (JSPS KAKENHI Grant,17J01969)

  • Takashi Ogino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were performed after approval and following the guidelines of Kyushu University (approval number: A20-131-0).

Copyright

© 2021, Ogino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,187
    views
  • 269
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Takashi Ogino
  2. Naoya Matsunaga
  3. Takahiro Tanaka
  4. Tomohito Tanihara
  5. Hideki Terajima
  6. Hikari Yoshitane
  7. Yoshitaka Fukada
  8. Akito Tsuruta
  9. Satoru Koyanagi
  10. Shigehiro Ohdo
(2021)
Post-transcriptional repression of circadian component CLOCK regulates cancer-stemness in murine breast cancer cells
eLife 10:e66155.
https://doi.org/10.7554/eLife.66155

Share this article

https://doi.org/10.7554/eLife.66155

Further reading

    1. Cancer Biology
    2. Cell Biology
    Zijing Wang, Bihan Xia ... Jilin Yang
    Research Article

    Bestrophin isoform 4 (BEST4) is a newly identified subtype of the calcium-activated chloride channel family. Analysis of colonic epithelial cell diversity by single-cell RNA-sequencing has revealed the existence of a cluster of BEST4+ mature colonocytes in humans. However, if the role of BEST4 is involved in regulating tumour progression remains largely unknown. In this study, we demonstrate that BEST4 overexpression attenuates cell proliferation, colony formation, and mobility in colorectal cancer (CRC) in vitro, and impedes the tumour growth and the liver metastasis in vivo. BEST4 is co-expressed with hairy/enhancer of split 4 (HES4) in the nucleus of cells, and HES4 signals BEST4 by interacting with the upstream region of the BEST4 promoter. BEST4 is epistatic to HES4 and downregulates TWIST1, thereby inhibiting epithelial-to-mesenchymal transition (EMT) in CRC. Conversely, knockout of BEST4 using CRISPR/Cas9 in CRC cells revitalises tumour growth and induces EMT. Furthermore, the low level of the BEST4 mRNA is correlated with advanced and the worse prognosis, suggesting its potential role involving CRC progression.

    1. Cancer Biology
    Bruno Bockorny, Lakshmi Muthuswamy ... Senthil K Muthuswamy
    Tools and Resources

    Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.