PomX, a ParA/MinD ATPase activating protein, is a triple regulator of cell division in Myxococcus xanthus

  1. Dominik Schumacher
  2. Andrea Harms
  3. Silke Bergeler
  4. Erwin Frey
  5. Lotte Sogaard-Andersen  Is a corresponding author
  1. Max Planck Institute for Terrestrial Microbiology, Germany
  2. Ludwig-Maximilians-Universität München, Germany

Abstract

Cell division site positioning is precisely regulated but the underlying mechanisms are incompletely understood. In the social bacterium Myxococcus xanthus, the ~15 MDa tripartite PomX/Y/Z complex associates with and translocates across the nucleoid in a PomZ ATPase-dependent manner to directly position and stimulate formation of the cytokinetic FtsZ-ring at midcell, and then undergoes fission during division. Here, we demonstrate that PomX consists of two functionally distinct domains and has three functions. The N-terminal domain stimulates ATPase activity of the ParA/MinD ATPase PomZ. The C-terminal domain interacts with PomY and forms polymers, which serve as a scaffold for PomX/Y/Z complex formation. Moreover, the PomX/PomZ interaction is important for fission of the PomX/Y/Z complex. These observations together with previous work support that the architecturally diverse ATPase activating proteins of ParA/MinD ATPases are highly modular and use the same mechanism to activate their cognate ATPase via a short positively charged N-terminal extension.

Data availability

All data supporting this study are available within the article and supporting files. Source data files have been provided for Figures 1, 2, 3, 4, 5 and 6.

Article and author information

Author details

  1. Dominik Schumacher

    Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrea Harms

    Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Silke Bergeler

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Erwin Frey

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8792-3358
  5. Lotte Sogaard-Andersen

    Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    For correspondence
    sogaard@mpi-marburg.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0674-0013

Funding

Deutsche Forschungsgemeinschaft (TRR 174)

  • Erwin Frey
  • Lotte Sogaard-Andersen

Max Planck Gesellschaft (NA)

  • Lotte Sogaard-Andersen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Schumacher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,331
    views
  • 213
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dominik Schumacher
  2. Andrea Harms
  3. Silke Bergeler
  4. Erwin Frey
  5. Lotte Sogaard-Andersen
(2021)
PomX, a ParA/MinD ATPase activating protein, is a triple regulator of cell division in Myxococcus xanthus
eLife 10:e66160.
https://doi.org/10.7554/eLife.66160

Share this article

https://doi.org/10.7554/eLife.66160

Further reading

    1. Cancer Biology
    2. Cell Biology
    Alexandra Urbancokova, Terezie Hornofova ... Pavla Vasicova
    Research Article

    PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.

    1. Cell Biology
    Surya Bansi Singh, Shatruhan Singh Rajput ... Deepa Subramanyam
    Research Article

    Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington's disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration-associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.