PomX, a ParA/MinD ATPase activating protein, is a triple regulator of cell division in Myxococcus xanthus

  1. Dominik Schumacher
  2. Andrea Harms
  3. Silke Bergeler
  4. Erwin Frey
  5. Lotte Sogaard-Andersen  Is a corresponding author
  1. Max Planck Institute for Terrestrial Microbiology, Germany
  2. Ludwig-Maximilians-Universität München, Germany

Abstract

Cell division site positioning is precisely regulated but the underlying mechanisms are incompletely understood. In the social bacterium Myxococcus xanthus, the ~15 MDa tripartite PomX/Y/Z complex associates with and translocates across the nucleoid in a PomZ ATPase-dependent manner to directly position and stimulate formation of the cytokinetic FtsZ-ring at midcell, and then undergoes fission during division. Here, we demonstrate that PomX consists of two functionally distinct domains and has three functions. The N-terminal domain stimulates ATPase activity of the ParA/MinD ATPase PomZ. The C-terminal domain interacts with PomY and forms polymers, which serve as a scaffold for PomX/Y/Z complex formation. Moreover, the PomX/PomZ interaction is important for fission of the PomX/Y/Z complex. These observations together with previous work support that the architecturally diverse ATPase activating proteins of ParA/MinD ATPases are highly modular and use the same mechanism to activate their cognate ATPase via a short positively charged N-terminal extension.

Data availability

All data supporting this study are available within the article and supporting files. Source data files have been provided for Figures 1, 2, 3, 4, 5 and 6.

Article and author information

Author details

  1. Dominik Schumacher

    Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrea Harms

    Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Silke Bergeler

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Erwin Frey

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8792-3358
  5. Lotte Sogaard-Andersen

    Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    For correspondence
    sogaard@mpi-marburg.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0674-0013

Funding

Deutsche Forschungsgemeinschaft (TRR 174)

  • Erwin Frey
  • Lotte Sogaard-Andersen

Max Planck Gesellschaft (NA)

  • Lotte Sogaard-Andersen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gisela Storz, National Institute of Child Health and Human Development, United States

Publication history

  1. Received: December 30, 2020
  2. Accepted: March 17, 2021
  3. Accepted Manuscript published: March 18, 2021 (version 1)
  4. Version of Record published: March 24, 2021 (version 2)

Copyright

© 2021, Schumacher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 877
    Page views
  • 141
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dominik Schumacher
  2. Andrea Harms
  3. Silke Bergeler
  4. Erwin Frey
  5. Lotte Sogaard-Andersen
(2021)
PomX, a ParA/MinD ATPase activating protein, is a triple regulator of cell division in Myxococcus xanthus
eLife 10:e66160.
https://doi.org/10.7554/eLife.66160

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Morgan L Pimm et al.
    Research Article Updated

    Profilin-1 (PFN1) is a cytoskeletal protein that regulates the dynamics of actin and microtubule assembly. Thus, PFN1 is essential for the normal division, motility, and morphology of cells. Unfortunately, conventional fusion and direct labeling strategies compromise different facets of PFN1 function. As a consequence, the only methods used to determine known PFN1 functions have been indirect and often deduced in cell-free biochemical assays. We engineered and characterized two genetically encoded versions of tagged PFN1 that behave identical to each other and the tag-free protein. In biochemical assays purified proteins bind to phosphoinositide lipids, catalyze nucleotide exchange on actin monomers, stimulate formin-mediated actin filament assembly, and bound tubulin dimers (kD = 1.89 µM) to impact microtubule dynamics. In PFN1-deficient mammalian cells, Halo-PFN1 or mApple-PFN1 (mAp-PEN1) restored morphological and cytoskeletal functions. Titrations of self-labeling Halo-ligands were used to visualize molecules of PFN1. This approach combined with specific function-disrupting point-mutants (Y6D and R88E) revealed PFN1 bound to microtubules in live cells. Cells expressing the ALS-associated G118V disease variant did not associate with actin filaments or microtubules. Thus, these tagged PFN1s are reliable tools for studying the dynamic interactions of PFN1 with actin or microtubules in vitro as well as in important cell processes or disease-states.

    1. Cell Biology
    Lu Zhu et al.
    Research Article

    Nedd4/Rsp5 family E3 ligases mediate numerous cellular processes, many of which require the E3 ligase to interact with PY-motif containing adaptor proteins. Several Arrestin-Related Trafficking adaptors (ARTs) of Rsp5 were self-ubiquitinated for activation, but the regulation mechanism remains elusive. Remarkably, we demonstrate that Art1, Art4, and Art5 undergo K63 linked di-Ubiquitination by Rsp5. This modification enhances the PM recruitment of Rsp5 by Art1 or Art5 upon substrate induction, required for cargo protein ubiquitination. In agreement with these observations, we find that di-ubiquitin strengthens the interaction between the Pombe orthologs of Rsp5 and Art1, Pub1 and Any1. Further, we discover that the HECT domain exosite protects the K63 linked di-Ubiquitin on the adaptors from cleavage by the deubiquitination enzyme Ubp2. Together, our study uncovers a novel ubiquitination modification implemented by Rsp5 adaptor proteins, underscoring the regulatory mechanism of how adaptor proteins control the recruitment and activity of Rsp5 for the turnover of membrane proteins.