PomX, a ParA/MinD ATPase activating protein, is a triple regulator of cell division in Myxococcus xanthus

  1. Dominik Schumacher
  2. Andrea Harms
  3. Silke Bergeler
  4. Erwin Frey
  5. Lotte Sogaard-Andersen  Is a corresponding author
  1. Max Planck Institute for Terrestrial Microbiology, Germany
  2. Ludwig-Maximilians-Universität München, Germany

Abstract

Cell division site positioning is precisely regulated but the underlying mechanisms are incompletely understood. In the social bacterium Myxococcus xanthus, the ~15 MDa tripartite PomX/Y/Z complex associates with and translocates across the nucleoid in a PomZ ATPase-dependent manner to directly position and stimulate formation of the cytokinetic FtsZ-ring at midcell, and then undergoes fission during division. Here, we demonstrate that PomX consists of two functionally distinct domains and has three functions. The N-terminal domain stimulates ATPase activity of the ParA/MinD ATPase PomZ. The C-terminal domain interacts with PomY and forms polymers, which serve as a scaffold for PomX/Y/Z complex formation. Moreover, the PomX/PomZ interaction is important for fission of the PomX/Y/Z complex. These observations together with previous work support that the architecturally diverse ATPase activating proteins of ParA/MinD ATPases are highly modular and use the same mechanism to activate their cognate ATPase via a short positively charged N-terminal extension.

Data availability

All data supporting this study are available within the article and supporting files. Source data files have been provided for Figures 1, 2, 3, 4, 5 and 6.

Article and author information

Author details

  1. Dominik Schumacher

    Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrea Harms

    Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Silke Bergeler

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Erwin Frey

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8792-3358
  5. Lotte Sogaard-Andersen

    Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    For correspondence
    sogaard@mpi-marburg.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0674-0013

Funding

Deutsche Forschungsgemeinschaft (TRR 174)

  • Erwin Frey
  • Lotte Sogaard-Andersen

Max Planck Gesellschaft (NA)

  • Lotte Sogaard-Andersen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Schumacher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,365
    views
  • 220
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dominik Schumacher
  2. Andrea Harms
  3. Silke Bergeler
  4. Erwin Frey
  5. Lotte Sogaard-Andersen
(2021)
PomX, a ParA/MinD ATPase activating protein, is a triple regulator of cell division in Myxococcus xanthus
eLife 10:e66160.
https://doi.org/10.7554/eLife.66160

Share this article

https://doi.org/10.7554/eLife.66160

Further reading

    1. Cell Biology
    Inês Sequeira
    Insight

    A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.

    1. Cell Biology
    2. Genetics and Genomics
    Jisun So, Olivia Strobel ... Hyun Cheol Roh
    Tools and Resources

    Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity. By integrating bulk nuclear RNA-seq from adipocyte nuclei of different sizes, we identify distinct adipocyte subpopulations categorized by size and functionality. These subpopulations follow two divergent trajectories, adaptive and pathological, with their prevalence varying by depot. Specifically, we identify a key molecular feature of dysfunctional hypertrophic adipocytes, a global shutdown in gene expression, along with elevated stress and inflammatory responses. Furthermore, our differential gene expression analysis reveals distinct contributions of adipocyte subpopulations to the overall pathophysiology of adipose tissue. Our study establishes a robust snRNA-seq method, providing novel insights into the biological processes involved in adipose tissue remodeling during obesity, with broader applicability across diverse biological systems.