Separable pupillary signatures of perception and action during perceptual multistability

  1. Jan Brascamp  Is a corresponding author
  2. Gilles De Hollander
  3. Michael D Wertheimer
  4. Ashley N DePew
  5. Tomas Knapen
  1. Michigan State University, United States
  2. University of Zurich, Switzerland
  3. Spinoza Centre for Neuroimaging, Netherlands

Abstract

The pupil provides a rich, non-invasive measure of the neural bases of perception and cognition, and has been of particular value in uncovering the role of arousal-linked neuromodulation, which alters both cortical processing and pupil size. But pupil size is subject to a multitude of influences, which complicates unique interpretation. We measured pupils of observers experiencing perceptual multistability -- an ever-changing subjective percept in the face of unchanging but inconclusive sensory input. In separate conditions the endogenously generated perceptual changes were either task-relevant or not, allowing a separation between perception-related and task-related pupil signals. Perceptual changes were marked by a complex pupil response that could be decomposed into two components: a dilation tied to task execution and plausibly indicative of an arousal-linked noradrenaline surge, and an overlapping constriction tied to the perceptual transient and plausibly a marker of altered visual cortical representation. Constriction, but not dilation, amplitude systematically depended on the time interval between perceptual changes, possibly providing an overt index of neural adaptation. These results show that the pupil provides a simultaneous reading on interacting but dissociable neural processes during perceptual multistability, and suggest that arousal-linked neuromodulator release shapes action but not perception in these circumstances.

Data availability

The raw data associated with this study are available from datadryad.org (https://doi.org/10.5061/dryad.41ns1rncp)Analysis code associated with this study is available from GitHub (https://github.com/janbrascamp/Pupils_during_binocular_rivalry)

The following data sets were generated

Article and author information

Author details

  1. Jan Brascamp

    Psychology, Michigan State University, East Lansing, United States
    For correspondence
    brascamp@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7955-5479
  2. Gilles De Hollander

    Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1988-5091
  3. Michael D Wertheimer

    Psychology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ashley N DePew

    Psychology, Michigan State University, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8398-7319
  5. Tomas Knapen

    University of Amsterdam, Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5863-8689

Funding

No external funding was received for this work.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained, and all research was approved by Michigan State University IRB, and executed in accordance with the Michigan State University IRB guidelines. The MSU IRB protocol number associated with this work is IRB# 17-996.

Copyright

© 2021, Brascamp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,318
    views
  • 169
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Brascamp
  2. Gilles De Hollander
  3. Michael D Wertheimer
  4. Ashley N DePew
  5. Tomas Knapen
(2021)
Separable pupillary signatures of perception and action during perceptual multistability
eLife 10:e66161.
https://doi.org/10.7554/eLife.66161

Share this article

https://doi.org/10.7554/eLife.66161

Further reading

    1. Neuroscience
    Diellor Basha, Amirmohammad Azarmehri ... Igor Timofeev
    Research Article

    Memory consolidation during sleep depends on the interregional coupling of slow waves, spindles, and sharp wave-ripples (SWRs), across the cortex, thalamus, and hippocampus. The reuniens nucleus of the thalamus, linking the medial prefrontal cortex (mPFC) and the hippocampus, may facilitate interregional coupling during sleep. To test this hypothesis, we used intracellular, extracellular unit and local field potential recordings in anesthetized and head restrained non-anesthetized cats as well as computational modelling. Electrical stimulation of the reuniens evoked both antidromic and orthodromic intracellular mPFC responses, consistent with bidirectional functional connectivity between mPFC, reuniens and hippocampus in anesthetized state. The major finding obtained from behaving animals is that at least during NREM sleep hippocampo-reuniens-mPFC form a functional loop. SWRs facilitate the triggering of thalamic spindles, which later reach neocortex. In return, transition to mPFC UP states increase the probability of hippocampal SWRs and later modulate spindle amplitude. During REM sleep hippocampal theta activity provides periodic locking of reuniens neuronal firing and strong crosscorrelation at LFP level, but the values of reuniens-mPFC crosscorrelation was relatively low and theta power at mPFC was low. The neural mass model of this network demonstrates that the strength of bidirectional hippocampo-thalamic connections determines the coupling of oscillations, suggesting a mechanistic link between synaptic weights and the propensity for interregional synchrony. Our results demonstrate the presence of functional connectivity in hippocampo-thalamo-cortical network, but the efficacy of this connectivity is modulated by behavioral state.

    1. Neuroscience
    Gaqi Tu, Peiying Wen ... Kaori Takehara-Nishiuchi
    Research Article

    Outcomes can vary even when choices are repeated. Such ambiguity necessitates adjusting how much to learn from each outcome by tracking its variability. The medial prefrontal cortex (mPFC) has been reported to signal the expected outcome and its discrepancy from the actual outcome (prediction error), two variables essential for controlling the learning rate. However, the source of signals that shape these coding properties remains unknown. Here, we investigated the contribution of cholinergic projections from the basal forebrain because they carry precisely timed signals about outcomes. One-photon calcium imaging revealed that as mice learned different probabilities of threat occurrence on two paths, some mPFC cells responded to threats on one of the paths, while other cells gained responses to threat omission. These threat- and omission-evoked responses were scaled to the unexpectedness of outcomes, some exhibiting a reversal in response direction when encountering surprising threats as opposed to surprising omissions. This selectivity for signed prediction errors was enhanced by optogenetic stimulation of local cholinergic terminals during threats. The enhanced threat-evoked cholinergic signals also made mice erroneously abandon the correct choice after a single threat that violated expectations, thereby decoupling their path choice from the history of threat occurrence on each path. Thus, acetylcholine modulates the encoding of surprising outcomes in the mPFC to control how much they dictate future decisions.