Mice in a labyrinth exhibit rapid learning, sudden insight, and efficient exploration

  1. Matthew Rosenberg
  2. Tony Zhang
  3. Pietro Perona  Is a corresponding author
  4. Markus Meister  Is a corresponding author
  1. California Institute of Technology, United States

Abstract

Animals learn certain complex tasks remarkably fast, sometimes after a single experience. What behavioral algorithms support this efficiency? Many contemporary studies based on two-alternative-forced-choice (2AFC) tasks observe only slow or incomplete learning. As an alternative, we study the unconstrained behavior of mice in a complex labyrinth and measure the dynamics of learning and the behaviors that enable it. A mouse in the labyrinth makes ~2000 navigation decisions per hour. The animal explores the maze, quickly discovers the location of a reward, and executes correct 10-bit choices after only 10 reward experiences - a learning rate 1000-fold higher than in 2AFC experiments. Many mice improve discontinuously from one minute to the next, suggesting moments of sudden insight about the structure of the labyrinth. The underlying search algorithm does not require a global memory of places visited and is largely explained by purely local turning rules.

Data availability

The behavioral data and code that produced the figures are available in a public Github repository cited in the article https://github.com/markusmeister/Rosenberg-2021-Repository. We are also preparing a permanent institutional repository.

The following data sets were generated

Article and author information

Author details

  1. Matthew Rosenberg

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  2. Tony Zhang

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  3. Pietro Perona

    Computation and Neural Systems, California Institute of Technology, Pasadena, United States
    For correspondence
    perona@caltech.edu
    Competing interests
    No competing interests declared.
  4. Markus Meister

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    meister@caltech.edu
    Competing interests
    Markus Meister, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2136-6506

Funding

Simons Foundation (543015)

  • Markus Meister

Simons Foundation (543025)

  • Pietro Perona

National Science Foundation (1564330)

  • Pietro Perona

Google

  • Pietro Perona

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to animal protocol 1656 approved by the institutional animal care and use committee (IACUC) at Caltech.

Copyright

© 2021, Rosenberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Rosenberg
  2. Tony Zhang
  3. Pietro Perona
  4. Markus Meister
(2021)
Mice in a labyrinth exhibit rapid learning, sudden insight, and efficient exploration
eLife 10:e66175.
https://doi.org/10.7554/eLife.66175

Share this article

https://doi.org/10.7554/eLife.66175

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Computational and Systems Biology
    Franck Simon, Maria Colomba Comes ... Herve Isambert
    Tools and Resources

    Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.