Uniparental nuclear inheritance following bisexual mating in fungi

  1. Vikas Yadav
  2. Sheng Sun
  3. Joseph Heitman  Is a corresponding author
  1. Duke University Medical Center, United States

Abstract

Some remarkable animal species require an opposite-sex partner for their sexual development but discard the partner’s genome before gamete formation, generating hemi-clonal progeny in a process called hybridogenesis. Here, we discovered a similar phenomenon, termed pseudosexual reproduction, in a basidiomycete human fungal pathogen, Cryptococcus neoformans, where exclusive uniparental inheritance of nuclear genetic material was observed during bisexual reproduction. Analysis of strains expressing fluorescent reporter proteins revealed instances where only one of the parental nuclei was present in the terminal sporulating basidium. Whole-genome sequencing revealed the nuclear genome of the progeny was identical with one or the other parental genome. Pseudosexual reproduction was also detected in natural isolate crosses where it resulted in mainly MATa progeny, a bias observed in Cryptococcus ecological distribution as well. The mitochondria in these progeny were inherited from the MAT<strong>a</strong> parent, resulting in nuclear-mitochondrial genome exchange. The meiotic recombinase Dmc1 was found to be critical for pseudosexual reproduction. These findings reveal a novel, and potentially ecologically significant, mode of eukaryotic microbial reproduction that shares features with hybridogenesis in animals.

Data availability

The sequence data generated in this study were submitted to NCBI with the BioProject accession number PRJNA682203.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Vikas Yadav

    Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2650-9035
  2. Sheng Sun

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph Heitman

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    For correspondence
    heitm001@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6369-5995

Funding

National Institute of Allergy and Infectious Diseases (AI39115-24)

  • Joseph Heitman

National Institute of Allergy and Infectious Diseases (AI50113-16)

  • Joseph Heitman

National Institute of Allergy and Infectious Diseases (AI33654-04)

  • Joseph Heitman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Yadav et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,177
    views
  • 269
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vikas Yadav
  2. Sheng Sun
  3. Joseph Heitman
(2021)
Uniparental nuclear inheritance following bisexual mating in fungi
eLife 10:e66234.
https://doi.org/10.7554/eLife.66234

Share this article

https://doi.org/10.7554/eLife.66234