A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease

Abstract

Bone marrow adipocytes accumulate with age and in diverse disease states. However, their origins and adaptations in these conditions remain unclear, impairing our understanding of their context-specific endocrine functions and relationship with surrounding tissues. In this study, by analyzing bone and adipose tissues in the lipodystrophic 'fat-free' mouse, we define a novel, secondary adipogenesis pathway that relies on the recruitment of adiponectin-negative stromal progenitors. This pathway is unique to the bone marrow and is activated with age and in states of metabolic stress in the fat-free mouse model, resulting in the expansion of bone marrow adipocytes specialized for lipid storage with compromised lipid mobilization and cytokine expression within regions traditionally devoted to hematopoiesis. This finding further distinguishes bone marrow from peripheral adipocytes and contributes to our understanding of bone marrow adipocyte origins, adaptation, and relationships with surrounding tissues with age and disease.

Data availability

All applicable source data are included with publication.

Article and author information

Author details

  1. Xiao Zhang

    Department of Medicine; Department of Biomedical Engineering, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hero Robles

    Department of Medicine, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6439-1309
  3. Kristann L Magee

    Department of Medicine, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Madelyn R Lorenz

    Department of Medicine, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhaohua Wang

    Department of Medicine: Department of Orthopaedic Surgery, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Charles A Harris

    Department of Medicine, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Clarissa S Craft

    Department of Medicine, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Erica L Scheller

    Department of Medicine; Department of Biomedical Engineering, Washington University, Saint Louis, United States
    For correspondence
    scheller@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1551-3816

Funding

National Institutes of Health (R00-DE02417)

  • Erica L Scheller

National Institutes of Health (P30-AR074992)

  • Erica L Scheller

Children's Discovery Institute (CDI-CORE-2015-505 and CDI-CORE-2019-813)

  • Erica L Scheller

Foundation for Barnes-Jewish Hospital (3770 and 4642)

  • Erica L Scheller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All work was performed as approved by the Institutional Animal Care and Use Committee (IACUC) at Washington University (Saint Louis, MO, USA; Protocol IDs 20160183 and 20180282). Animal facilities at Washington University meet federal, state, and local guidelines for laboratory animal care and are accredited by the Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Copyright

© 2021, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,847
    views
  • 667
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiao Zhang
  2. Hero Robles
  3. Kristann L Magee
  4. Madelyn R Lorenz
  5. Zhaohua Wang
  6. Charles A Harris
  7. Clarissa S Craft
  8. Erica L Scheller
(2021)
A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease
eLife 10:e66275.
https://doi.org/10.7554/eLife.66275

Share this article

https://doi.org/10.7554/eLife.66275

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.