A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease

Abstract

Bone marrow adipocytes accumulate with age and in diverse disease states. However, their origins and adaptations in these conditions remain unclear, impairing our understanding of their context-specific endocrine functions and relationship with surrounding tissues. In this study, by analyzing bone and adipose tissues in the lipodystrophic 'fat-free' mouse, we define a novel, secondary adipogenesis pathway that relies on the recruitment of adiponectin-negative stromal progenitors. This pathway is unique to the bone marrow and is activated with age and in states of metabolic stress in the fat-free mouse model, resulting in the expansion of bone marrow adipocytes specialized for lipid storage with compromised lipid mobilization and cytokine expression within regions traditionally devoted to hematopoiesis. This finding further distinguishes bone marrow from peripheral adipocytes and contributes to our understanding of bone marrow adipocyte origins, adaptation, and relationships with surrounding tissues with age and disease.

Data availability

All applicable source data are included with publication.

Article and author information

Author details

  1. Xiao Zhang

    Department of Medicine; Department of Biomedical Engineering, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hero Robles

    Department of Medicine, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6439-1309
  3. Kristann L Magee

    Department of Medicine, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Madelyn R Lorenz

    Department of Medicine, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhaohua Wang

    Department of Medicine: Department of Orthopaedic Surgery, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Charles A Harris

    Department of Medicine, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Clarissa S Craft

    Department of Medicine, Washington University, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Erica L Scheller

    Department of Medicine; Department of Biomedical Engineering, Washington University, Saint Louis, United States
    For correspondence
    scheller@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1551-3816

Funding

National Institutes of Health (R00-DE02417)

  • Erica L Scheller

National Institutes of Health (P30-AR074992)

  • Erica L Scheller

Children's Discovery Institute (CDI-CORE-2015-505 and CDI-CORE-2019-813)

  • Erica L Scheller

Foundation for Barnes-Jewish Hospital (3770 and 4642)

  • Erica L Scheller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gordana Vunjak-Novakovic, Columbia University, United States

Ethics

Animal experimentation: All work was performed as approved by the Institutional Animal Care and Use Committee (IACUC) at Washington University (Saint Louis, MO, USA; Protocol IDs 20160183 and 20180282). Animal facilities at Washington University meet federal, state, and local guidelines for laboratory animal care and are accredited by the Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Version history

  1. Received: January 5, 2021
  2. Preprint posted: January 6, 2021 (view preprint)
  3. Accepted: August 2, 2021
  4. Accepted Manuscript published: August 11, 2021 (version 1)
  5. Version of Record published: September 2, 2021 (version 2)
  6. Version of Record updated: September 7, 2021 (version 3)

Copyright

© 2021, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,095
    Page views
  • 593
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiao Zhang
  2. Hero Robles
  3. Kristann L Magee
  4. Madelyn R Lorenz
  5. Zhaohua Wang
  6. Charles A Harris
  7. Clarissa S Craft
  8. Erica L Scheller
(2021)
A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease
eLife 10:e66275.
https://doi.org/10.7554/eLife.66275

Share this article

https://doi.org/10.7554/eLife.66275

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.