Spontaneous neural synchrony links intrinsic spinal sensory and motor networks during unconsciousness

  1. Jacob Graves McPherson  Is a corresponding author
  2. Maria F Bandres
  1. Washington University School of Medicine, United States

Abstract

Non-random functional connectivity during unconsciousness is a defining feature of supraspinal networks. However, its generalizability to intrinsic spinal networks remains incompletely understood. Previously, Barry et al. (2014) used fMRI to reveal bilateral resting state functional connectivity within sensory-dominant and, separately, motor-dominant regions of the spinal cord. Here, we record spike trains from large populations of spinal interneurons in vivo in rats and demonstrate that spontaneous functional connectivity also links sensory- and motor-dominant regions during unconsciousness. The spatiotemporal patterns of connectivity could not be explained by latent afferent activity or by populations of interconnected neurons spiking randomly. We also document connection latencies compatible with mono- and di-synaptic interactions and putative excitatory and inhibitory connections. The observed activity is consistent with the hypothesis that salient, experience-dependent patterns of neural transmission introduced during behavior or by injury/disease are reactivated during unconsciousness. Such a spinal replay mechanism could shape circuit-level connectivity and ultimately behavior.

Data availability

All data analyzed for this study are included in the manuscript and supporting files, including raw data superimposed upon group data in images. Source data for Figs. 2,5,6,7, and 8, as well as detailed statistical tables, are also included as supporting files.

Article and author information

Author details

  1. Jacob Graves McPherson

    Physical Therapy, Anesthesiology, Washington University School of Medicine, St Louis, United States
    For correspondence
    mcpherson.jacob@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4554-7531
  2. Maria F Bandres

    Biomedical Engineering, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Neurological Disorders and Stroke (7R01NS111234-02)

  • Jacob Graves McPherson

Eunice Kennedy Shriver National Institute of Child Health and Human Development (K12HD073945)

  • Jacob Graves McPherson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the guidelines of the Institutional Animal Care and Usage Committees (IACUC) of Florida International University (FIU) and Washington University in St. Louis School of Medicine (WUSM). The studies were approved under IACUC protocols: 16-049 and 19-013 at FIU and 19-1052 at WUSM. All experiments were performed under deep, surgical grade anesthesia and animals were humanely euthanized in accordance with American Veterinary Medical Association Guidelines.

Copyright

© 2021, McPherson & Bandres

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,120
    views
  • 170
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacob Graves McPherson
  2. Maria F Bandres
(2021)
Spontaneous neural synchrony links intrinsic spinal sensory and motor networks during unconsciousness
eLife 10:e66308.
https://doi.org/10.7554/eLife.66308

Share this article

https://doi.org/10.7554/eLife.66308

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.