Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish

  1. Meredith H Wilson
  2. Stephen C Ekker
  3. Steven Arthur Farber  Is a corresponding author
  1. Carnegie Institution for Science, United States
  2. Mayo Clinic, United States

Abstract

Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real-time from the subcellular to the whole organism level. Fluorescently tagging the lipid-droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.

Data availability

All data generated during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1, 2, 3, 4, 5, and 6.

Article and author information

Author details

  1. Meredith H Wilson

    Embryology, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6152-7127
  2. Stephen C Ekker

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    Stephen C Ekker, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0726-4212
  3. Steven Arthur Farber

    Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States
    For correspondence
    farber@carnegiescience.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8037-7312

Funding

National Institutes of Health (R01 DK093399)

  • Steven Arthur Farber

National Institutes of Health (R01 GM63904)

  • Stephen C Ekker
  • Steven Arthur Farber

National Institutes of Health (F32DK109592)

  • Meredith H Wilson

G. Harold and Leila Y. Mathers Foundation

  • Steven Arthur Farber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Amnon Schlegel, University of Utah School of Medicine, United States

Ethics

Animal experimentation: All procedures using zebrafish (Danio rerio) were approved by the Carnegie Institution Department of Embryology Animal Care and Use Committee (Protocol #139).

Version history

  1. Received: January 8, 2021
  2. Preprint posted: January 10, 2021 (view preprint)
  3. Accepted: August 10, 2021
  4. Accepted Manuscript published: August 13, 2021 (version 1)
  5. Version of Record published: September 2, 2021 (version 2)
  6. Version of Record updated: August 9, 2023 (version 3)

Copyright

© 2021, Wilson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,521
    views
  • 495
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meredith H Wilson
  2. Stephen C Ekker
  3. Steven Arthur Farber
(2021)
Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish
eLife 10:e66393.
https://doi.org/10.7554/eLife.66393

Share this article

https://doi.org/10.7554/eLife.66393

Further reading

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.