Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice

  1. Seungjin Ryu
  2. Irina Shchukina
  3. Yun-Hee Youm
  4. Hua Qing
  5. Brandon Hilliard
  6. Tamara Dlugos
  7. Xinbo Zhang
  8. Yuki Yasumoto
  9. Carmen J Booth
  10. Carlos Fernández-Hernando
  11. Yajaira Suárez
  12. Kamal Khanna
  13. Tamas L Horvath
  14. Marcelo O Dietrich
  15. Maxim N Artyomov
  16. Andrew Wang  Is a corresponding author
  17. Vishwa Deep Dixit  Is a corresponding author
  1. Yale University, United States
  2. Washington University School of Medicine, United States
  3. Yale University School of Medicine, United States
  4. New York University Langone Health, United States
  5. Yale School of Medicine, United States

Abstract

Increasing age is the strongest predictor of risk of COVID-19 severity and mortality. Immunometabolic switch from glycolysis to ketolysis protects against inflammatory damage and influenza infection in adults. To investigate how age compromises defense against coronavirus infection, and whether a pro-longevity ketogenic-diet (KD) impacts immune-surveillance, we developed an aging model of natural murine beta coronavirus (mCoV) infection with mouse hepatitis virus strain-A59 (MHV-A59). When inoculated intranasally, mCoV is pneumotropic and recapitulates several clinical hallmarks of COVID-19 infection. Aged mCoV-A59-infected mice have increased mortality and higher systemic inflammation in the heart, adipose tissue and hypothalamus, including neutrophilia and loss of γδ T cells in lungs. Activation of ketogenesis in aged mice expands tissue protective γδ T cells, deactivates the NLRP3 inflammasome and decreases pathogenic monocytes in lungs of infected aged mice. These data establish harnessing of the ketogenic immunometabolic checkpoint as a potential treatment against coronavirus infection in the aged.

Data availability

The single cell RNA-sequencing and bulk RNA-sequencing data has been uploaded to Gene Expression Omnibus (GSE155346 and GSE155347) respectively.

The following data sets were generated

Article and author information

Author details

  1. Seungjin Ryu

    Comparative Medicine and Immunobiology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Irina Shchukina

    Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yun-Hee Youm

    Comparative Medicine and Immunobiology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hua Qing

    Internal Medicine, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brandon Hilliard

    Internal Medicine, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tamara Dlugos

    Comparative Medicine and Immunobiology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xinbo Zhang

    Comparative Medicine, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuki Yasumoto

    Comparative Medicine, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Carmen J Booth

    Department of Comparative Medicine, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Carlos Fernández-Hernando

    Comparative Medicine and Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yajaira Suárez

    Comparative Medicine and Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Kamal Khanna

    New York University Langone Health, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Tamas L Horvath

    Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7522-4602
  14. Marcelo O Dietrich

    Comparative Medicine, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9781-2221
  15. Maxim N Artyomov

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Andrew Wang

    Yale School of Medicine, New Haven, United States
    For correspondence
    andrew.wang@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6951-8081
  17. Vishwa Deep Dixit

    Comparative Medicine and Immunobiology, Yale University School of Medicine, New Haven, United States
    For correspondence
    vishwa.dixit@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5341-6494

Funding

National Institute on Aging (P01AG051459)

  • Vishwa Deep Dixit

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR070811)

  • Vishwa Deep Dixit

American Federation for Aging Research (Glenn Foundation for Medical Research Postdoctoral Fellowships in Aging Research)

  • Seungjin Ryu

National Institute of Allergy and Infectious Diseases (1K08AI128745)

  • Andrew Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments and animal use were conducted in compliance with the National Institute of Health Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) protocol (#2019-11572 and 2020-20149) of Yale University.

Copyright

© 2021, Ryu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,131
    views
  • 503
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seungjin Ryu
  2. Irina Shchukina
  3. Yun-Hee Youm
  4. Hua Qing
  5. Brandon Hilliard
  6. Tamara Dlugos
  7. Xinbo Zhang
  8. Yuki Yasumoto
  9. Carmen J Booth
  10. Carlos Fernández-Hernando
  11. Yajaira Suárez
  12. Kamal Khanna
  13. Tamas L Horvath
  14. Marcelo O Dietrich
  15. Maxim N Artyomov
  16. Andrew Wang
  17. Vishwa Deep Dixit
(2021)
Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice
eLife 10:e66522.
https://doi.org/10.7554/eLife.66522

Share this article

https://doi.org/10.7554/eLife.66522

Further reading

    1. Immunology and Inflammation
    Weigao Zhang, Hu Liu ... Dan Weng
    Research Article

    As a central hub for metabolism, the liver exhibits strong adaptability to maintain homeostasis in response to food fluctuations throughout evolution. However, the mechanisms governing this resilience remain incompletely understood. In this study, we identified Receptor interacting protein kinase 1 (RIPK1) in hepatocytes as a critical regulator in preserving hepatic homeostasis during metabolic challenges, such as short-term fasting or high-fat dieting. Our results demonstrated that hepatocyte-specific deficiency of RIPK1 sensitized the liver to short-term fasting-induced liver injury and hepatocyte apoptosis in both male and female mice. Despite being a common physiological stressor that typically does not induce liver inflammation, short-term fasting triggered hepatic inflammation and compensatory proliferation in hepatocyte-specific RIPK1-deficient (Ripk1-hepKO) mice. Transcriptomic analysis revealed that short-term fasting oriented the hepatic microenvironment into an inflammatory state in Ripk1-hepKO mice, with up-regulated expression of inflammation and immune cell recruitment-associated genes. Single-cell RNA sequencing further confirmed the altered cellular composition in the liver of Ripk1-hepKO mice during fasting, highlighting the increased recruitment of macrophages to the liver. Mechanically, our results indicated that ER stress was involved in fasting-induced liver injury in Ripk1-hepKO mice. Overall, our findings revealed the role of RIPK1 in maintaining liver homeostasis during metabolic fluctuations and shed light on the intricate interplay between cell death, inflammation, and metabolism.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Patsy R Tomlinson, Rachel G Knox ... Robert K Semple
    Research Article

    PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.