Future life expectancy in Europe taking into account the impact of smoking, obesity and alcohol

  1. Fanny Janssen  Is a corresponding author
  2. Anastasios Bardoutsos
  3. Shady El Gewily
  4. Joop De Beer
  1. Netherlands Interdisciplinary Demographic Institute (NIDI) & Dept of Demography, Faculty of Spatial Sciences, University of Groningen, Netherlands
  2. Faculty of Spatial Sciences, University of Groningen, Netherlands

Abstract

Introduction: In Europe, women can expect to live on average 82 years, and men 75 years. Forecasting how life expectancy will develop in the future is essential for society. Most forecasts rely on a mechanical extrapolation of past mortality trends, which leads to unreliable outcomes because of temporal fluctuations in the past trends due to lifestyle 'epidemics'.

Methods: We project life expectancy for 18 European countries by taking into account the impact of smoking, obesity, and alcohol on mortality, and the mortality experiences of forerunner populations.

Results: We project that life expectancy in these 18 countries will increase from, on average, 83.4 years for women and 78.3 years for men in 2014 to 92.8 years for women and 90.5 years for men in 2065. Compared to others (Lee-Carter, Eurostat, United Nations), we project higher future life expectancy values and more realistic differences between countries and sexes.

Conclusions: Our results imply longer individual lifespans, and more elderly in society.

Funding: Netherlands Organisation for Scientific Research (NWO) (grant no. 452-13-001).

Data availability

Some of our original data regarding lifestyle-attributable mortality were based on previous publications, which, in turn, used data that are openly available. The all-cause mortality data and the exposure data can be obtained through the Human Mortality Database. We have provided source data files for all our tables and figures. These comprise the numerical data that are represented in the different figures, and the output on which the different tables are based. In addition, one excel file with all the final numerical / output data that were used as input for the tables and figures will be made available at the Open Science Framework: https://osf.io/ghu45/. In addition, we will upload there the underlying observed age-specific mortality rates (all-cause mortality, non-lifestyle-attributable mortality, lifestyle-attributable mortality) as well as the adjusted and projected age-specific mortality rates (medians and 90% and 95% projection intervals). The different R codes used for the different steps of the data analyses will be shared - as well - through the Open Science Framework link above.

Article and author information

Author details

  1. Fanny Janssen

    NA, Netherlands Interdisciplinary Demographic Institute (NIDI) & Dept of Demography, Faculty of Spatial Sciences, University of Groningen, The Hague, Netherlands
    For correspondence
    janssen@nidi.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3110-238X
  2. Anastasios Bardoutsos

    Demography Department, Faculty of Spatial Sciences, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Shady El Gewily

    Demography Department, Faculty of Spatial Sciences, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Joop De Beer

    NA, Netherlands Interdisciplinary Demographic Institute (NIDI) & Dept of Demography, Faculty of Spatial Sciences, University of Groningen, The Hague, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

the Netherlands Organisation for Scientific Research (Innovational Research Incentives Scheme Vici,452-13-001)

  • Fanny Janssen
  • Anastasios Bardoutsos
  • Shady El Gewily

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Janssen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,170
    views
  • 258
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fanny Janssen
  2. Anastasios Bardoutsos
  3. Shady El Gewily
  4. Joop De Beer
(2021)
Future life expectancy in Europe taking into account the impact of smoking, obesity and alcohol
eLife 10:e66590.
https://doi.org/10.7554/eLife.66590

Share this article

https://doi.org/10.7554/eLife.66590

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Rashmi Sukumaran, Achuthsankar S Nair, Moinak Banerjee
    Research Article

    Burden of stroke differs by region, which could be attributed to differences in comorbid conditions and ethnicity. Genomewide variation acts as a proxy marker for ethnicity, and comorbid conditions. We present an integrated approach to understand this variation by considering prevalence and mortality rates of stroke and its comorbid risk for 204 countries from 2009 to 2019, and Genome-wide association studies (GWAS) risk variant for all these conditions. Global and regional trend analysis of rates using linear regression, correlation, and proportion analysis, signifies ethnogeographic differences. Interestingly, the comorbid conditions that act as risk drivers for stroke differed by regions, with more of metabolic risk in America and Europe, in contrast to high systolic blood pressure in Asian and African regions. GWAS risk loci of stroke and its comorbid conditions indicate distinct population stratification for each of these conditions, signifying for population-specific risk. Unique and shared genetic risk variants for stroke, and its comorbid and followed up with ethnic-specific variation can help in determining regional risk drivers for stroke. Unique ethnic-specific risk variants and their distinct patterns of linkage disequilibrium further uncover the drivers for phenotypic variation. Therefore, identifying population- and comorbidity-specific risk variants might help in defining the threshold for risk, and aid in developing population-specific prevention strategies for stroke.

    1. Epidemiology and Global Health
    2. Evolutionary Biology
    Renan Maestri, Benoît Perez-Lamarque ... Hélène Morlon
    Research Article

    Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus–host codiversification have been largely over-estimated.