Respiratory and intestinal epithelial cells exhibit differential susceptibility and innate immune responses to EV-D68

  1. Megan Culler Freeman
  2. Alexandra I Wells
  3. Jessica Ciomperlik-Patton
  4. Michael M Myerburg
  5. Liheng Yang
  6. Jennifer Konopka-Anstadt
  7. Carolyn Coyne  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Centers for Disease Control and Prevention, United States
  3. Duke University, United States

Abstract

Enterovirus D68 (EV-D68) has been implicated in outbreaks of severe respiratory illness and is associated with acute flaccid myelitis (AFM). EV-D68 is often detected in patient respiratory samples but has also been detected in stool and wastewater, suggesting the potential for both respiratory and enteric routes of transmission. Here, we used a panel of EV-D68 isolates, including a historical pre-2014 isolate and multiple contemporary isolates from AFM outbreak years, to define the dynamics of viral replication and the host response to infection in primary human airway cells and stem cell-derived enteroids. We show that some recent EV-D68 isolates have decreased sensitivity to acid and temperature compared with earlier isolates and that the respiratory, but not intestinal, epithelium induces a robust type III interferon (IFN) response that restricts infection. Our findings define the differential responses of the respiratory and intestinal epithelium to contemporary EV-D68 isolates and suggest that a subset of isolates have the potential to target both the human airway and gastrointestinal tracts.

Data availability

Raw sequencing files have been deposited in Sequence Read Archives and are publicly available (PRJNA688898).

The following data sets were generated

Article and author information

Author details

  1. Megan Culler Freeman

    Pediatrics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra I Wells

    Pediatrics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jessica Ciomperlik-Patton

    Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael M Myerburg

    Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Liheng Yang

    Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer Konopka-Anstadt

    Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Carolyn Coyne

    Duke University, Durham, United States
    For correspondence
    carolyn.coyne@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1884-6309

Funding

National Institute of Allergy and Infectious Diseases (AI081759)

  • Carolyn Coyne

National Institute of Allergy and Infectious Diseases (AI060525)

  • Alexandra I Wells

National Institute of Allergy and Infectious Diseases (AI149866)

  • Alexandra I Wells

Pediatric Infectious Diseases Society (Fellowship in Basic and Translational Research)

  • Megan Culler Freeman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karla Kirkegaard, Stanford University School of Medicine, United States

Version history

  1. Received: January 19, 2021
  2. Accepted: June 30, 2021
  3. Accepted Manuscript published: July 1, 2021 (version 1)
  4. Version of Record published: July 16, 2021 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,860
    views
  • 234
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Megan Culler Freeman
  2. Alexandra I Wells
  3. Jessica Ciomperlik-Patton
  4. Michael M Myerburg
  5. Liheng Yang
  6. Jennifer Konopka-Anstadt
  7. Carolyn Coyne
(2021)
Respiratory and intestinal epithelial cells exhibit differential susceptibility and innate immune responses to EV-D68
eLife 10:e66687.
https://doi.org/10.7554/eLife.66687

Share this article

https://doi.org/10.7554/eLife.66687

Further reading

    1. Microbiology and Infectious Disease
    Moagi Tube Shaku, Peter K Um ... Bavesh D Kana
    Research Article

    Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.

    1. Microbiology and Infectious Disease
    Ryan Thiermann, Michael Sandler ... Suckjoon Jun
    Tools and Resources

    Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.