Respiratory and intestinal epithelial cells exhibit differential susceptibility and innate immune responses to EV-D68

  1. Megan Culler Freeman
  2. Alexandra I Wells
  3. Jessica Ciomperlik-Patton
  4. Michael M Myerburg
  5. Liheng Yang
  6. Jennifer Konopka-Anstadt
  7. Carolyn Coyne  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Centers for Disease Control and Prevention, United States
  3. Duke University, United States

Abstract

Enterovirus D68 (EV-D68) has been implicated in outbreaks of severe respiratory illness and is associated with acute flaccid myelitis (AFM). EV-D68 is often detected in patient respiratory samples but has also been detected in stool and wastewater, suggesting the potential for both respiratory and enteric routes of transmission. Here, we used a panel of EV-D68 isolates, including a historical pre-2014 isolate and multiple contemporary isolates from AFM outbreak years, to define the dynamics of viral replication and the host response to infection in primary human airway cells and stem cell-derived enteroids. We show that some recent EV-D68 isolates have decreased sensitivity to acid and temperature compared with earlier isolates and that the respiratory, but not intestinal, epithelium induces a robust type III interferon (IFN) response that restricts infection. Our findings define the differential responses of the respiratory and intestinal epithelium to contemporary EV-D68 isolates and suggest that a subset of isolates have the potential to target both the human airway and gastrointestinal tracts.

Data availability

Raw sequencing files have been deposited in Sequence Read Archives and are publicly available (PRJNA688898).

The following data sets were generated

Article and author information

Author details

  1. Megan Culler Freeman

    Pediatrics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra I Wells

    Pediatrics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jessica Ciomperlik-Patton

    Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael M Myerburg

    Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Liheng Yang

    Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer Konopka-Anstadt

    Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Carolyn Coyne

    Duke University, Durham, United States
    For correspondence
    carolyn.coyne@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1884-6309

Funding

National Institute of Allergy and Infectious Diseases (AI081759)

  • Carolyn Coyne

National Institute of Allergy and Infectious Diseases (AI060525)

  • Alexandra I Wells

National Institute of Allergy and Infectious Diseases (AI149866)

  • Alexandra I Wells

Pediatric Infectious Diseases Society (Fellowship in Basic and Translational Research)

  • Megan Culler Freeman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,056
    views
  • 254
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Megan Culler Freeman
  2. Alexandra I Wells
  3. Jessica Ciomperlik-Patton
  4. Michael M Myerburg
  5. Liheng Yang
  6. Jennifer Konopka-Anstadt
  7. Carolyn Coyne
(2021)
Respiratory and intestinal epithelial cells exhibit differential susceptibility and innate immune responses to EV-D68
eLife 10:e66687.
https://doi.org/10.7554/eLife.66687

Share this article

https://doi.org/10.7554/eLife.66687

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article Updated

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.

    1. Microbiology and Infectious Disease
    Caihong Hu
    Insight

    Certain strains of a bacterium found in the gut of some animals, Lactobacillus plantarum, are able to counter hyperuricemia, a condition caused by high levels of uric acid in the blood.