Respiratory and intestinal epithelial cells exhibit differential susceptibility and innate immune responses to EV-D68

  1. Megan Culler Freeman
  2. Alexandra I Wells
  3. Jessica Ciomperlik-Patton
  4. Michael M Myerburg
  5. Liheng Yang
  6. Jennifer Konopka-Anstadt
  7. Carolyn Coyne  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Centers for Disease Control and Prevention, United States
  3. Duke University, United States

Abstract

Enterovirus D68 (EV-D68) has been implicated in outbreaks of severe respiratory illness and is associated with acute flaccid myelitis (AFM). EV-D68 is often detected in patient respiratory samples but has also been detected in stool and wastewater, suggesting the potential for both respiratory and enteric routes of transmission. Here, we used a panel of EV-D68 isolates, including a historical pre-2014 isolate and multiple contemporary isolates from AFM outbreak years, to define the dynamics of viral replication and the host response to infection in primary human airway cells and stem cell-derived enteroids. We show that some recent EV-D68 isolates have decreased sensitivity to acid and temperature compared with earlier isolates and that the respiratory, but not intestinal, epithelium induces a robust type III interferon (IFN) response that restricts infection. Our findings define the differential responses of the respiratory and intestinal epithelium to contemporary EV-D68 isolates and suggest that a subset of isolates have the potential to target both the human airway and gastrointestinal tracts.

Data availability

Raw sequencing files have been deposited in Sequence Read Archives and are publicly available (PRJNA688898).

The following data sets were generated

Article and author information

Author details

  1. Megan Culler Freeman

    Pediatrics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra I Wells

    Pediatrics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jessica Ciomperlik-Patton

    Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael M Myerburg

    Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Liheng Yang

    Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer Konopka-Anstadt

    Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Carolyn Coyne

    Duke University, Durham, United States
    For correspondence
    carolyn.coyne@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1884-6309

Funding

National Institute of Allergy and Infectious Diseases (AI081759)

  • Carolyn Coyne

National Institute of Allergy and Infectious Diseases (AI060525)

  • Alexandra I Wells

National Institute of Allergy and Infectious Diseases (AI149866)

  • Alexandra I Wells

Pediatric Infectious Diseases Society (Fellowship in Basic and Translational Research)

  • Megan Culler Freeman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karla Kirkegaard, Stanford University School of Medicine, United States

Version history

  1. Received: January 19, 2021
  2. Accepted: June 30, 2021
  3. Accepted Manuscript published: July 1, 2021 (version 1)
  4. Version of Record published: July 16, 2021 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,924
    views
  • 238
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Megan Culler Freeman
  2. Alexandra I Wells
  3. Jessica Ciomperlik-Patton
  4. Michael M Myerburg
  5. Liheng Yang
  6. Jennifer Konopka-Anstadt
  7. Carolyn Coyne
(2021)
Respiratory and intestinal epithelial cells exhibit differential susceptibility and innate immune responses to EV-D68
eLife 10:e66687.
https://doi.org/10.7554/eLife.66687

Share this article

https://doi.org/10.7554/eLife.66687

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Thomas Kuhlman
    Insight

    A new study reveals how naturally occurring mutations affect the biophysical properties of nucleocapsid proteins in SARS-CoV-2.

    1. Microbiology and Infectious Disease
    Gretchen Diffendall, Aurelie Claes ... Artur Scherf
    Research Article

    While often undetected and untreated, persistent seasonal asymptomatic malaria infections remain a global public health problem. Despite the presence of parasites in the peripheral blood, no symptoms develop. Disease severity is correlated with the levels of infected red blood cells (iRBCs) adhering within blood vessels. Changes in iRBC adhesion capacity have been linked to seasonal asymptomatic malaria infections, however how this is occurring is still unknown. Here, we present evidence that RNA polymerase III (RNA Pol III) transcription in Plasmodium falciparum is downregulated in field isolates obtained from asymptomatic individuals during the dry season. Through experiments with in vitro cultured parasites, we have uncovered an RNA Pol III-dependent mechanism that controls pathogen proliferation and expression of a major virulence factor in response to external stimuli. Our findings establish a connection between P. falciparum cytoadhesion and a non-coding RNA family transcribed by Pol III. Additionally, we have identified P. falciparum Maf1 as a pivotal regulator of Pol III transcription, both for maintaining cellular homeostasis and for responding adaptively to external signals. These results introduce a novel perspective that contributes to our understanding of P. falciparum virulence. Furthermore, they establish a connection between this regulatory process and the occurrence of seasonal asymptomatic malaria infections.