Loss of Mir146b with aging contributes to inflammation and mitochondrial dysfunction in thioglycollate-elicited peritoneal macrophages

  1. Andrea Santeford
  2. Aaron Y Lee
  3. Abdoulaye Sene
  4. Lynn M Hassman
  5. Alexey A Sergushichev
  6. Ekaterina Loginicheva
  7. Maxim N Artyamov
  8. Phillip A Ruzycki
  9. Rajendra Apte  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, United States

Abstract

Macrophages undergo programmatic changes with age leading to altered cytokine polarization and immune dysfunction, shifting these critical immune cells from protective sentinels to disease promoters. The molecular mechanisms underlying macrophage inflammaging are poorly understood. Using an unbiased RNA-seq approach, we identified Mir146b as a microRNA whose expression progressively and unidirectionally declined with age in thioglycollate-elicited murine macrophages. Mir146b deficiency led to altered macrophage cytokine expression and reduced mitochondrial metabolic activity, two hallmarks of cellular aging. Single cell RNA sequencing identified patterns of altered inflammation and interferon gamma signaling in Mir146b deficient macrophages. Identification of Mir146b as a potential regulator of macrophage aging provides novel insights into immune dysfunction associated with aging.

Data availability

Sequencing data have been deposited in GEO under accession code GSE164476.

Article and author information

Author details

  1. Andrea Santeford

    Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7691-6213
  2. Aaron Y Lee

    Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Abdoulaye Sene

    Ophthalmology and Visual Sciences, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St.Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lynn M Hassman

    Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexey A Sergushichev

    Pathology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ekaterina Loginicheva

    Pathology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Maxim N Artyamov

    Pathology, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Phillip A Ruzycki

    Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rajendra Apte

    Pathology, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    apte@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2281-2336

Funding

National Institutes of Health (R01 EY019287-08)

  • Rajendra Apte

Glenn Foundation for Medical Research

  • Rajendra Apte

American Federation for Aging Research

  • Rajendra Apte

Carl Marshall Reeves and Mildred Almen Reeves Foundation

  • Rajendra Apte

Jeffery T. Fort Innovation Fund

  • Rajendra Apte

Starr Foundation

  • Rajendra Apte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bérénice A Benayoun, University of Southern California, United States

Ethics

Animal experimentation: All animal use and experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Washington University in Saint Louis and performed according to the Washington University Animal Care and Use Guidelines (protocol numbers 2018-0160 and 20-0003).

Version history

  1. Received: January 20, 2021
  2. Accepted: August 20, 2021
  3. Accepted Manuscript published: August 23, 2021 (version 1)
  4. Accepted Manuscript updated: August 25, 2021 (version 2)
  5. Accepted Manuscript updated: August 26, 2021 (version 3)
  6. Version of Record published: September 2, 2021 (version 4)

Copyright

© 2021, Santeford et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,816
    Page views
  • 208
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Santeford
  2. Aaron Y Lee
  3. Abdoulaye Sene
  4. Lynn M Hassman
  5. Alexey A Sergushichev
  6. Ekaterina Loginicheva
  7. Maxim N Artyamov
  8. Phillip A Ruzycki
  9. Rajendra Apte
(2021)
Loss of Mir146b with aging contributes to inflammation and mitochondrial dysfunction in thioglycollate-elicited peritoneal macrophages
eLife 10:e66703.
https://doi.org/10.7554/eLife.66703

Share this article

https://doi.org/10.7554/eLife.66703

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.