Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave

  1. Lindsay A Hohsfield
  2. Allison R Najafi
  3. Yasamine Ghorbanian
  4. Neelakshi Soni
  5. Joshua Crapser
  6. Dario X Figueroa Velez
  7. Shan Jiang
  8. Sarah E Royer
  9. Sung Jin Kim
  10. Caden M Henningfield
  11. Aileen Anderson
  12. Sunil P Gandhi
  13. Ali Mortazavi
  14. Matthew A Inlay
  15. Kim N Green  Is a corresponding author
  1. University of California, Irvine, United States
  2. University of Connecticut Health Center, United States
  3. University of California Irvine, United States
  4. UC Irvine, United States

Abstract

Microglia, the brain's resident myeloid cells, play central roles in brain defense, homeostasis, and disease. Using a prolonged colony-stimulating factor 1 receptor inhibitor (CSF1Ri) approach, we report an unprecedented level of microglial depletion and establish a model system that achieves an empty microglial niche in the adult brain. We identify a myeloid cell that migrates from the subventricular zone and associated white matter areas. Following CSF1Ri, these amoeboid cells migrate radially and tangentially in a dynamic wave filling the brain in a distinct pattern, to replace the microglial-depleted brain. These repopulating cells are enriched in disease-associated microglia genes and exhibit similar phenotypic and transcriptional profiles to white matter-associated microglia. Our findings shed light on the overlapping and distinct functional complexity and diversity of myeloid cells of the CNS and provide new insight into repopulating microglia function and dynamics in the mouse brain.

Data availability

Sequencing data have been deposited in GEO under accession code GSE166092, and can be explored in an interactive fashion at http://rnaseq.mind.uci.edu/green/. All other data generated or analysed during this study are included in the manuscript and support files.

The following data sets were generated

Article and author information

Author details

  1. Lindsay A Hohsfield

    Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Allison R Najafi

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yasamine Ghorbanian

    Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Neelakshi Soni

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joshua Crapser

    Neuroscience, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dario X Figueroa Velez

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shan Jiang

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarah E Royer

    Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sung Jin Kim

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Caden M Henningfield

    Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Aileen Anderson

    Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8203-8891
  12. Sunil P Gandhi

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Ali Mortazavi

    Developmental and Cell Biology, University of California Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Matthew A Inlay

    Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Kim N Green

    Neurobiology & Behavior, UC Irvine, Irvine, United States
    For correspondence
    kngreen@uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6049-6744

Funding

National Institute of Neurological Disorders and Stroke (R01NS083801)

  • Kim N Green

National Institute on Aging (R01AG056768)

  • Kim N Green

National Institute on Aging (P50AG016573)

  • Kim N Green

National Institute of Neurological Disorders and Stroke (F31NS108611)

  • Joshua Crapser

National Institute of Neurological Disorders and Stroke (T32NS082174)

  • Yasamine Ghorbanian

Alzheimer's Association (AARF-16-442762)

  • Lindsay A Hohsfield

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All rodent experiments were performed in accordance with animal protocols approved (AUP-17-179) by the Institutional Animal Care and Use Committee at the University of California, Irvine (UCI).

Reviewing Editor

  1. Jaime Grutzendler, Yale University, United States

Publication history

  1. Received: January 20, 2021
  2. Preprint posted: February 18, 2021 (view preprint)
  3. Accepted: August 22, 2021
  4. Accepted Manuscript published: August 23, 2021 (version 1)
  5. Version of Record published: September 8, 2021 (version 2)

Copyright

© 2021, Hohsfield et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,811
    Page views
  • 388
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lindsay A Hohsfield
  2. Allison R Najafi
  3. Yasamine Ghorbanian
  4. Neelakshi Soni
  5. Joshua Crapser
  6. Dario X Figueroa Velez
  7. Shan Jiang
  8. Sarah E Royer
  9. Sung Jin Kim
  10. Caden M Henningfield
  11. Aileen Anderson
  12. Sunil P Gandhi
  13. Ali Mortazavi
  14. Matthew A Inlay
  15. Kim N Green
(2021)
Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave
eLife 10:e66738.
https://doi.org/10.7554/eLife.66738

Further reading

    1. Immunology and Inflammation
    Yemsratch T Akalu et al.
    Research Article

    Knockout (KO) mouse models play critical roles in elucidating biological processes behind disease-associated or disease-resistant traits. As a presumed consequence of gene KO, mice display certain phenotypes. Based on insight into the molecular role of said gene in a biological process, it is inferred that the particular biological process causally underlies the trait. This approach has been crucial towards understanding the basis of pathological and/or advantageous traits associated with Mertk KO mice. Mertk KO mice suffer from severe, early-onset retinal degeneration. MERTK, expressed in retinal pigment epithelia, is a receptor tyrosine kinase with a critical role in phagocytosis of apoptotic cells or cellular debris. Therefore, early-onset, severe retinal degeneration was described to be a direct consequence of failed MERTK-mediated phagocytosis of photoreceptor outer segments by retinal pigment epithelia. Here we report that the loss of Mertk alone is not sufficient for retinal degeneration. The widely used Mertk KO mouse carries multiple coincidental changes in its genome that affect the expression of a number of genes, including the Mertk paralog Tyro3. Retinal degeneration manifests only when the function of Tyro3 is concomitantly lost. Furthermore, Mertk KO mice display improved anti-tumor immunity. MERTK is expressed in macrophages. Therefore, enhanced anti-tumor immunity was inferred to result from the failure of macrophages to dispose of cancer cell corpses, resulting in a pro-inflammatory tumor microenvironment. The resistance against two syngeneic mouse tumor models observed in Mertk KO mice is not, however, phenocopied by the loss of Mertk alone. Neither Tyro3, nor macrophage phagocytosis by alternate genetic redundancy, account for the absence of anti-tumor immunity. Collectively, our results indicate that context-dependent epistasis of independent modifier alleles determines Mertk KO traits.

    1. Immunology and Inflammation
    Joseph Wayne M Fowler et al.
    Research Article

    There is a growing appreciation that a tight relationship exists between cholesterol homeostasis and immunity in leukocytes, however, this relationship has not been deeply explored in the vascular endothelium. Endothelial cells (ECs) rapidly respond to extrinsic signals, such as tissue damage or microbial infection, by upregulating factors to activate and recruit circulating leukocytes to the site of injury and aberrant activation of ECs leads to inflammatory based diseases, such as multiple sclerosis and atherosclerosis. Here, we studied the role of cholesterol and a key transcription regulator of cholesterol homeostasis, SREBP2, in the EC responses to inflammatory stress. Treatment of primary human ECs with pro-inflammatory cytokines upregulated SREBP2 cleavage and cholesterol biosynthetic gene expression within the late phase of the acute inflammatory response. Furthermore, SREBP2 activation was dependent on NF-kB DNA binding and canonical SCAP-SREBP2 processing. Mechanistically, inflammatory activation of SREBP was mediated by a reduction in accessible cholesterol, leading to heightened sterol sensing and downstream SREBP2 cleavage. Detailed analysis of NF-kB inducible genes that may impact sterol sensing resulted in the identification of a novel RELA-inducible target, STARD10, that mediates accessible cholesterol homeostasis in ECs. Thus, this study provides an in-depth characterization of the relationship between cholesterol homeostasis and the acute inflammatory response in EC.