Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave

  1. Lindsay A Hohsfield
  2. Allison R Najafi
  3. Yasamine Ghorbanian
  4. Neelakshi Soni
  5. Joshua Crapser
  6. Dario X Figueroa Velez
  7. Shan Jiang
  8. Sarah E Royer
  9. Sung Jin Kim
  10. Caden M Henningfield
  11. Aileen Anderson
  12. Sunil P Gandhi
  13. Ali Mortazavi
  14. Matthew A Inlay
  15. Kim N Green  Is a corresponding author
  1. University of California, Irvine, United States
  2. University of Connecticut Health Center, United States
  3. University of California Irvine, United States
  4. UC Irvine, United States

Abstract

Microglia, the brain's resident myeloid cells, play central roles in brain defense, homeostasis, and disease. Using a prolonged colony-stimulating factor 1 receptor inhibitor (CSF1Ri) approach, we report an unprecedented level of microglial depletion and establish a model system that achieves an empty microglial niche in the adult brain. We identify a myeloid cell that migrates from the subventricular zone and associated white matter areas. Following CSF1Ri, these amoeboid cells migrate radially and tangentially in a dynamic wave filling the brain in a distinct pattern, to replace the microglial-depleted brain. These repopulating cells are enriched in disease-associated microglia genes and exhibit similar phenotypic and transcriptional profiles to white matter-associated microglia. Our findings shed light on the overlapping and distinct functional complexity and diversity of myeloid cells of the CNS and provide new insight into repopulating microglia function and dynamics in the mouse brain.

Data availability

Sequencing data have been deposited in GEO under accession code GSE166092, and can be explored in an interactive fashion at http://rnaseq.mind.uci.edu/green/. All other data generated or analysed during this study are included in the manuscript and support files.

The following data sets were generated

Article and author information

Author details

  1. Lindsay A Hohsfield

    Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Allison R Najafi

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yasamine Ghorbanian

    Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Neelakshi Soni

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joshua Crapser

    Neuroscience, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dario X Figueroa Velez

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shan Jiang

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarah E Royer

    Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sung Jin Kim

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Caden M Henningfield

    Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Aileen Anderson

    Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8203-8891
  12. Sunil P Gandhi

    Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Ali Mortazavi

    Developmental and Cell Biology, University of California Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Matthew A Inlay

    Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Kim N Green

    Neurobiology & Behavior, UC Irvine, Irvine, United States
    For correspondence
    kngreen@uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6049-6744

Funding

National Institute of Neurological Disorders and Stroke (R01NS083801)

  • Kim N Green

National Institute on Aging (R01AG056768)

  • Kim N Green

National Institute on Aging (P50AG016573)

  • Kim N Green

National Institute of Neurological Disorders and Stroke (F31NS108611)

  • Joshua Crapser

National Institute of Neurological Disorders and Stroke (T32NS082174)

  • Yasamine Ghorbanian

Alzheimer's Association (AARF-16-442762)

  • Lindsay A Hohsfield

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All rodent experiments were performed in accordance with animal protocols approved (AUP-17-179) by the Institutional Animal Care and Use Committee at the University of California, Irvine (UCI).

Copyright

© 2021, Hohsfield et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,669
    views
  • 615
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lindsay A Hohsfield
  2. Allison R Najafi
  3. Yasamine Ghorbanian
  4. Neelakshi Soni
  5. Joshua Crapser
  6. Dario X Figueroa Velez
  7. Shan Jiang
  8. Sarah E Royer
  9. Sung Jin Kim
  10. Caden M Henningfield
  11. Aileen Anderson
  12. Sunil P Gandhi
  13. Ali Mortazavi
  14. Matthew A Inlay
  15. Kim N Green
(2021)
Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave
eLife 10:e66738.
https://doi.org/10.7554/eLife.66738

Share this article

https://doi.org/10.7554/eLife.66738

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.