The human cerebellum is essential for modulating perceptual sensitivity based on temporal expectations

  1. Assaf Breska  Is a corresponding author
  2. Richard B Ivry
  1. University of California, Berkeley, United States

Abstract

A functional benefit of attention is to proactively enhance perceptual sensitivity in space and time. Although attentional orienting has traditionally been associated with cortico-thalamic networks, recent evidence has shown that individuals with cerebellar degeneration (CD) show a reduced reaction time benefit from cues that enable temporal anticipation. The present study examined whether the cerebellum contributes to the proactive attentional modulation in time of perceptual sensitivity. We tested CD participants on a non-speeded, challenging perceptual discrimination task, asking if they benefit from temporal cues. Strikingly, the CD group showed no duration-specific perceptual sensitivity benefit when cued by repeated but aperiodic presentation of the target interval. In contrast, they performed similar to controls when cued by a rhythmic stream. This dissociation further specifies the functional domain of the cerebellum and establishes its role in the attentional adjustment of perceptual sensitivity in time in addition to its well-documented role in motor timing.

Data availability

De-identified source data files for all figures and analyses in the article have been provided. Additional demographic information was not uploaded as it was not used in any analysis reported in the text, and can be provided upon request in personal communication with the corresponding author, without additional restrictions.

Article and author information

Author details

  1. Assaf Breska

    Psychology, Helen Wills neuroscience institute, University of California, Berkeley, Berkeley, CA, United States
    For correspondence
    assaf.breska@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6233-073X
  2. Richard B Ivry

    University of California, Berkeley, Berkeley, United States
    Competing interests
    Richard B Ivry, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4728-5130

Funding

National Institutes of Health (NS092079)

  • Richard B Ivry

National Institutes of Health (NS116883)

  • Richard B Ivry

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided informed consent to participate in the study and for the publication of de-identified data. The study was approved by the Institutional Review Board at the University of California, Berkeley (CPHS# 2016-02-8439).

Copyright

© 2021, Breska & Ivry

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,039
    views
  • 257
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Assaf Breska
  2. Richard B Ivry
(2021)
The human cerebellum is essential for modulating perceptual sensitivity based on temporal expectations
eLife 10:e66743.
https://doi.org/10.7554/eLife.66743

Share this article

https://doi.org/10.7554/eLife.66743

Further reading

    1. Neuroscience
    Hendrik Heinbockel, Gregor Leicht ... Lars Schwabe
    Research Article

    When retrieved, seemingly stable memories can become sensitive to significant events, such as acute stress. The mechanisms underlying these memory dynamics remain poorly understood. Here, we show that noradrenergic stimulation after memory retrieval impairs subsequent remembering, depending on hippocampal and cortical signals emerging during retrieval. In a three-day study, we measured brain activity using fMRI during initial encoding, 24 hr-delayed memory cueing followed by pharmacological elevations of glucocorticoid or noradrenergic activity, and final recall. While post-retrieval glucocorticoids did not affect subsequent memory, the impairing effect of noradrenergic arousal on final recall depended on hippocampal reactivation and category-level reinstatement in the ventral temporal cortex during memory cueing. These effects did not require a reactivation of the original memory trace and did not interact with offline reinstatement during rest. Our findings demonstrate that, depending on the retrieval-related neural reactivation of memories, noradrenergic arousal after retrieval can alter the future accessibility of consolidated memories.

    1. Neuroscience
    Yichun Shuai, Megan Sammons ... Yoshinori Aso
    Tools and Resources

    The mushroom body (MB) is the center for associative learning in insects. In Drosophila, intersectional split-GAL4 drivers and electron microscopy (EM) connectomes have laid the foundation for precise interrogation of the MB neural circuits. However, investigation of many cell types upstream and downstream of the MB has been hindered due to lack of specific driver lines. Here we describe a new collection of over 800 split-GAL4 and split-LexA drivers that cover approximately 300 cell types, including sugar sensory neurons, putative nociceptive ascending neurons, olfactory and thermo-/hygro-sensory projection neurons, interneurons connected with the MB-extrinsic neurons, and various other cell types. We characterized activation phenotypes for a subset of these lines and identified a sugar sensory neuron line most suitable for reward substitution. Leveraging the thousands of confocal microscopy images associated with the collection, we analyzed neuronal morphological stereotypy and discovered that one set of mushroom body output neurons, MBON08/MBON09, exhibits striking individuality and asymmetry across animals. In conjunction with the EM connectome maps, the driver lines reported here offer a powerful resource for functional dissection of neural circuits for associative learning in adult Drosophila.