1. Developmental Biology
  2. Physics of Living Systems
Download icon

Global Constraints within the Developmental Program of the Drosophila Wing

  1. Vasyl Alba
  2. James Carthew
  3. Richard W Carthew
  4. Madhav Mani  Is a corresponding author
  1. Northwestern University, United States
Research Article
  • Cited 0
  • Views 1,879
  • Annotations
Cite this article as: eLife 2021;10:e66750 doi: 10.7554/eLife.66750

Abstract

Organismal development is a complex process, involving a vast number of molecular constituents interacting on multiple spatio-temporal scales in the formation of intricate body structures. Despite this complexity, development is remarkably reproducible and displays tolerance to both genetic and environmental perturbations. This robustness implies the existence of hidden simplicities in developmental programs. Here, using the Drosophila wing as a model system, we develop a new quantitative strategy that enables a robust description of biologically salient phenotypic variation. Analyzing natural phenotypic variation across a highly outbred population, and variation generated by weak perturbations in genetic and environmental conditions, we observe a highly constrained set of wing phenotypes. Remarkably, the phenotypic variants can be described by a single integrated mode that corresponds to a non-intuitive combination of structural variations across the wing. This work demonstrates the presence of constraints that funnel environmental inputs and genetic variation into phenotypes stretched along a single axis in morphological space. Our results provide quantitative insights into the nature of robustness in complex forms while yet accommodating the potential for evolutionary variations. Methodologically, we introduce a general strategy for finding such invariances in other developmental contexts.

Data availability

Data will be made publicly available at Mani, Madhav, 2021, "Imaging data from "Global Constraints within the Developmental Program of the Drosophila Wing"", https://doi.org/10.7910/DVN/UFGJFB, Harvard Dataverse, V1

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Vasyl Alba

    Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. James Carthew

    Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard W Carthew

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0343-0156
  4. Madhav Mani

    Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, United States
    For correspondence
    madhav.mani@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5812-4167

Funding

National Science Foundation (DMS-1547394)

  • James Carthew

National Science Foundation (1764421)

  • Richard W Carthew
  • Madhav Mani

Simons Foundation (597491)

  • Vasyl Alba
  • Richard W Carthew
  • Madhav Mani

Simons Foundation (Investigator - MMLS)

  • Madhav Mani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Danelle Devenport, Princeton University, United States

Publication history

  1. Received: January 21, 2021
  2. Accepted: June 25, 2021
  3. Accepted Manuscript published: June 28, 2021 (version 1)
  4. Version of Record published: July 5, 2021 (version 2)

Copyright

© 2021, Alba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,879
    Page views
  • 228
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Alessandro Bonfini et al.
    Research Article

    The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples ISC proliferation from expression of niche-derived signals but, surprisingly, rescuing these effects genetically was not sufficient to modify diet's impact on midgut size. However, when stem cell proliferation was deficient, diet's impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.

    1. Developmental Biology
    2. Physics of Living Systems
    Yonghyun Song, Changbong Hyeon
    Research Article Updated

    Spatial boundaries formed during animal development originate from the pre-patterning of tissues by signaling molecules, called morphogens. The accuracy of boundary location is limited by the fluctuations of morphogen concentration that thresholds the expression level of target gene. Producing more morphogen molecules, which gives rise to smaller relative fluctuations, would better serve to shape more precise target boundaries; however, it incurs more thermodynamic cost. In the classical diffusion-depletion model of morphogen profile formation, the morphogen molecules synthesized from a local source display an exponentially decaying concentration profile with a characteristic length λ. Our theory suggests that in order to attain a precise profile with the minimal cost, λ should be roughly half the distance to the target boundary position from the source. Remarkably, we find that the profiles of morphogens that pattern the Drosophila embryo and wing imaginal disk are formed with nearly optimal λ. Our finding underscores the cost-effectiveness of precise morphogen profile formation in Drosophila development.