Myoglobin primary structure reveals multiple convergent transitions to semi-aquatic life in the world's smallest mammalian divers

  1. Kai He  Is a corresponding author
  2. Triston G Eastman
  3. Hannah Czolacz
  4. Shuhao Li
  5. Akio Shinohara
  6. Shin-ichiro Kawada
  7. Mark S Springer
  8. Michael Berenbrink  Is a corresponding author
  9. Kevin L Campbell  Is a corresponding author
  1. Southern Medical University, China
  2. University of Manitoba, Canada
  3. University of Liverpool, United Kingdom
  4. University of Miyazaki, Japan
  5. National Museum of Nature and Science, Japan
  6. University of California, Riverside, United States

Abstract

The speciose mammalian order Eulipotyphla (moles, shrews, hedgehogs, solenodons) combines an unusual diversity of semi-aquatic, semi-fossorial, and fossorial forms that arose from terrestrial forbearers. However, our understanding of the ecomorphological pathways leading to these lifestyles has been confounded by a fragmentary fossil record, unresolved phylogenetic relationships, and potential morphological convergence, calling for novel approaches. The net surface charge of the oxygen-storing muscle protein myoglobin (ZMb), which can be readily determined from its primary structure, provides an objective target to address this question due to mechanistic linkages with myoglobin concentration. Here we generate a comprehensive 71 species molecular phylogeny that resolves previously intractable intra-family relationships and then ancestrally reconstruct ZMb evolution to identify ancient lifestyle transitions based on protein sequence alone. Our phylogenetically informed analyses confidently resolve fossorial habits having evolved twice in talpid moles and reveal five independent secondary aquatic transitions in the order housing the world's smallest endothermic divers.

Data availability

The newly obtained myoglobin sequences were deposited to GenBank under accession numbers MW456061 to MW456069 and MW473727- MW473769, and sequence alignments per gene were deposited to Dryad Digital Repository at https://doi.org/10.5061/dryad.brv15dv7q.

Article and author information

Author details

  1. Kai He

    School of Basic Medical Science, Southern Medical University, Guagnzhou, China
    For correspondence
    hk200131060071@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6234-2589
  2. Triston G Eastman

    Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Hannah Czolacz

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Shuhao Li

    Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Akio Shinohara

    Department of Bio-resources, University of Miyazaki, Miyazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Shin-ichiro Kawada

    Department of Zoology, National Museum of Nature and Science, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark S Springer

    7Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Berenbrink

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    For correspondence
    Michael.Berenbrink@liverpool.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  9. Kevin L Campbell

    Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
    For correspondence
    kevin.campbell@umanitoba.ca
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (31970389)

  • Kai He

National Natural Science Foundation of China (31301869)

  • Kai He

National Science Foundation (DEB-1457735)

  • Mark S Springer

University of Manitoba (41342)

  • Kevin L Campbell

Natural Sciences and Engineering Research Council of Canada (RGPIN/238838-2011)

  • Kevin L Campbell

Natural Sciences and Engineering Research Council of Canada (RGPIN/6562-2016)

  • Kevin L Campbell

Natural Sciences and Engineering Research Council of Canada (RGPIN/412336-2011)

  • Kevin L Campbell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,353
    views
  • 359
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kai He
  2. Triston G Eastman
  3. Hannah Czolacz
  4. Shuhao Li
  5. Akio Shinohara
  6. Shin-ichiro Kawada
  7. Mark S Springer
  8. Michael Berenbrink
  9. Kevin L Campbell
(2021)
Myoglobin primary structure reveals multiple convergent transitions to semi-aquatic life in the world's smallest mammalian divers
eLife 10:e66797.
https://doi.org/10.7554/eLife.66797

Share this article

https://doi.org/10.7554/eLife.66797

Further reading

    1. Evolutionary Biology
    Lucy A Winder, Mirre JP Simons, Terry Burke
    Research Article

    Life-history theory, central to our understanding of diversity in morphology, behaviour, and senescence, describes how traits evolve through the optimisation of trade-offs in investment. Despite considerable study, there is only minimal support for trade-offs within species between the two traits most closely linked to fitness – reproductive effort and survival – questioning the theory’s general validity. We used a meta-analysis to separate the effects of individual quality (positive survival/reproduction correlation) from the costs of reproduction (negative survival/reproduction correlation) using studies of reproductive effort and parental survival in birds. Experimental enlargement of brood size caused reduced parental survival. However, the effect size of brood size manipulation was small and opposite to the effect of phenotypic quality, as we found that individuals that naturally produced larger clutches also survived better. The opposite effects on parental survival in experimental and observational studies of reproductive effort provide the first meta-analytic evidence for theory suggesting that quality differences mask trade-offs. Fitness projections using the overall effect size revealed that reproduction presented negligible costs, except when reproductive effort was forced beyond the maximum level observed within species, to that seen between species. We conclude that there is little support for the most fundamental life-history trade-off, between reproductive effort and survival, operating within a population. We suggest that within species the fitness landscape of the reproduction–survival trade-off is flat until it reaches the boundaries of the between-species fast–slow life-history continuum. Our results provide a quantitative explanation as to why the costs of reproduction are not apparent and why variation in reproductive effort persists within species.

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Gülnihal Kavaklioglu, Alexandra Podhornik ... Christian Seiser
    Research Article

    Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.