Myoglobin primary structure reveals multiple convergent transitions to semi-aquatic life in the world's smallest mammalian divers
Abstract
The speciose mammalian order Eulipotyphla (moles, shrews, hedgehogs, solenodons) combines an unusual diversity of semi-aquatic, semi-fossorial, and fossorial forms that arose from terrestrial forbearers. However, our understanding of the ecomorphological pathways leading to these lifestyles has been confounded by a fragmentary fossil record, unresolved phylogenetic relationships, and potential morphological convergence, calling for novel approaches. The net surface charge of the oxygen-storing muscle protein myoglobin (ZMb), which can be readily determined from its primary structure, provides an objective target to address this question due to mechanistic linkages with myoglobin concentration. Here we generate a comprehensive 71 species molecular phylogeny that resolves previously intractable intra-family relationships and then ancestrally reconstruct ZMb evolution to identify ancient lifestyle transitions based on protein sequence alone. Our phylogenetically informed analyses confidently resolve fossorial habits having evolved twice in talpid moles and reveal five independent secondary aquatic transitions in the order housing the world's smallest endothermic divers.
Data availability
The newly obtained myoglobin sequences were deposited to GenBank under accession numbers MW456061 to MW456069 and MW473727- MW473769, and sequence alignments per gene were deposited to Dryad Digital Repository at https://doi.org/10.5061/dryad.brv15dv7q.
Article and author information
Author details
Funding
National Natural Science Foundation of China (31970389)
- Kai He
National Natural Science Foundation of China (31301869)
- Kai He
National Science Foundation (DEB-1457735)
- Mark S Springer
University of Manitoba (41342)
- Kevin L Campbell
Natural Sciences and Engineering Research Council of Canada (RGPIN/238838-2011)
- Kevin L Campbell
Natural Sciences and Engineering Research Council of Canada (RGPIN/6562-2016)
- Kevin L Campbell
Natural Sciences and Engineering Research Council of Canada (RGPIN/412336-2011)
- Kevin L Campbell
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Shigehiro Kuraku, National Institute of Genetics, Japan
Publication history
- Received: January 22, 2021
- Accepted: May 4, 2021
- Accepted Manuscript published: May 5, 2021 (version 1)
- Version of Record published: June 15, 2021 (version 2)
- Version of Record updated: June 15, 2021 (version 3)
- Version of Record updated: June 16, 2021 (version 4)
Copyright
© 2021, He et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,654
- Page views
-
- 296
- Downloads
-
- 3
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
The avian palaeognath phylogeny has been recently revised significantly due to the advancement of genome-wide comparative analyses and provides the opportunity to trace the evolution of the microstructure and crystallography of modern dinosaur eggshells. Here, eggshells of all major clades of Palaeognathae (including extinct taxa) and selected eggshells of Neognathae and non-avian dinosaurs are analysed with electron backscatter diffraction. Our results show the detailed microstructures and crystallographies of (previously) loosely categorized ostrich-, rhea-, and tinamou-style morphotypes of palaeognath eggshells. All rhea-style eggshell appears homologous, while respective ostrich-style and tinamou-style morphotypes are best interpreted as homoplastic morphologies (independently acquired). Ancestral state reconstruction and parsimony analysis additionally show that rhea-style eggshell represents the ancestral state of palaeognath eggshells both in microstructure and crystallography. The ornithological and palaeontological implications of the current study are not only helpful for the understanding of evolution of modern and extinct dinosaur eggshells, but also aid other disciplines where palaeognath eggshells provide useful archive for comparative contrasts (e.g. palaeoenvironmental reconstructions, geochronology, and zooarchaeology).
-
- Evolutionary Biology
Vertebrate limb morphology often reflects the environment due to variation in locomotor requirements. However, proximal and distal limb segments may evolve differently from one another, reflecting an anatomical gradient of functional specialization that has been suggested to be impacted by the timing of development. Here we explore whether the temporal sequence of bone condensation predicts variation in the capacity of evolution to generate morphological diversity in proximal and distal forelimb segments across more than 600 species of mammals. Distal elements not only exhibit greater shape diversity, but also show stronger within-element integration and, on average, faster evolutionary responses than intermediate and upper limb segments. Results are consistent with the hypothesis that late developing distal bones display greater morphological variation than more proximal limb elements. However, the higher integration observed within the autopod deviates from such developmental predictions, suggesting that functional specialization plays an important role in driving within-element covariation. Proximal and distal limb segments also show different macroevolutionary patterns, albeit not showing a perfect proximo-distal gradient. The high disparity of the mammalian autopod, reported here, is consistent with the higher potential of development to generate variation in more distal limb structures, as well as functional specialization of the distal elements.