Myoglobin primary structure reveals multiple convergent transitions to semi-aquatic life in the world's smallest mammalian divers

  1. Kai He  Is a corresponding author
  2. Triston G Eastman
  3. Hannah Czolacz
  4. Shuhao Li
  5. Akio Shinohara
  6. Shin-ichiro Kawada
  7. Mark S Springer
  8. Michael Berenbrink  Is a corresponding author
  9. Kevin L Campbell  Is a corresponding author
  1. Southern Medical University, China
  2. University of Manitoba, Canada
  3. University of Liverpool, United Kingdom
  4. University of Miyazaki, Japan
  5. National Museum of Nature and Science, Japan
  6. University of California, Riverside, United States

Abstract

The speciose mammalian order Eulipotyphla (moles, shrews, hedgehogs, solenodons) combines an unusual diversity of semi-aquatic, semi-fossorial, and fossorial forms that arose from terrestrial forbearers. However, our understanding of the ecomorphological pathways leading to these lifestyles has been confounded by a fragmentary fossil record, unresolved phylogenetic relationships, and potential morphological convergence, calling for novel approaches. The net surface charge of the oxygen-storing muscle protein myoglobin (ZMb), which can be readily determined from its primary structure, provides an objective target to address this question due to mechanistic linkages with myoglobin concentration. Here we generate a comprehensive 71 species molecular phylogeny that resolves previously intractable intra-family relationships and then ancestrally reconstruct ZMb evolution to identify ancient lifestyle transitions based on protein sequence alone. Our phylogenetically informed analyses confidently resolve fossorial habits having evolved twice in talpid moles and reveal five independent secondary aquatic transitions in the order housing the world's smallest endothermic divers.

Data availability

The newly obtained myoglobin sequences were deposited to GenBank under accession numbers MW456061 to MW456069 and MW473727- MW473769, and sequence alignments per gene were deposited to Dryad Digital Repository at https://doi.org/10.5061/dryad.brv15dv7q.

Article and author information

Author details

  1. Kai He

    School of Basic Medical Science, Southern Medical University, Guagnzhou, China
    For correspondence
    hk200131060071@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6234-2589
  2. Triston G Eastman

    Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Hannah Czolacz

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Shuhao Li

    Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Akio Shinohara

    Department of Bio-resources, University of Miyazaki, Miyazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Shin-ichiro Kawada

    Department of Zoology, National Museum of Nature and Science, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark S Springer

    7Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Berenbrink

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    For correspondence
    Michael.Berenbrink@liverpool.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  9. Kevin L Campbell

    Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
    For correspondence
    kevin.campbell@umanitoba.ca
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (31970389)

  • Kai He

National Natural Science Foundation of China (31301869)

  • Kai He

National Science Foundation (DEB-1457735)

  • Mark S Springer

University of Manitoba (41342)

  • Kevin L Campbell

Natural Sciences and Engineering Research Council of Canada (RGPIN/238838-2011)

  • Kevin L Campbell

Natural Sciences and Engineering Research Council of Canada (RGPIN/6562-2016)

  • Kevin L Campbell

Natural Sciences and Engineering Research Council of Canada (RGPIN/412336-2011)

  • Kevin L Campbell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,231
    views
  • 345
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kai He
  2. Triston G Eastman
  3. Hannah Czolacz
  4. Shuhao Li
  5. Akio Shinohara
  6. Shin-ichiro Kawada
  7. Mark S Springer
  8. Michael Berenbrink
  9. Kevin L Campbell
(2021)
Myoglobin primary structure reveals multiple convergent transitions to semi-aquatic life in the world's smallest mammalian divers
eLife 10:e66797.
https://doi.org/10.7554/eLife.66797

Share this article

https://doi.org/10.7554/eLife.66797

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Michael James Chambers, Sophia B Scobell, Meru J Sadhu
    Research Article

    Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued.  However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Giulia Ferraretti, Paolo Abondio ... Marco Sazzini
    Research Article

    It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.