Activity in perirhinal and entorhinal cortex predicts perceived visual similarities among category exemplars with highest precision

  1. Kayla M Ferko
  2. Anna Blumenthal
  3. Chris B Martin
  4. Daria Proklova
  5. Alexander N Minos
  6. Lisa M Saksida
  7. Timothy J Bussey
  8. Ali R Khan
  9. Stefan Köhler  Is a corresponding author
  1. University of Western Ontario, Canada
  2. University of Laval, Canada
  3. Florida State University, United States

Abstract

Vision neuroscience has made great strides in understanding the hierarchical organization of object representations along the ventral visual stream (VVS). How VVS representations capture fine-grained visual similarities between objects that observers subjectively perceive has received limited examination so far. In the current study, we addressed this question by focusing on perceived visual similarities among subordinate exemplars of real world-categories. We hypothesized that these perceived similarities are reflected with highest fidelity in neural activity patterns downstream from inferotemporal regions, namely in perirhinal and anterolateral entorhinal cortex in the medial temporal-lobe. To address this issue with fMRI, we administered a modified 1-Back task that required discrimination between category exemplars as well as categorization. Further, we obtained observer-specific ratings of perceived visual similarities, which predicted behavioural performance during scanning. As anticipated, we found that activity patterns in perirhinal and anterolateral entorhinal cortex predicted the structure of perceived visual similarity relationships among category exemplars, including its observer-specific component, with higher precision than any other VVS region. Our findings provide new evidence that subjective aspects of object perception that rely on fine-grained visual differentiation are reflected with highest fidelity in the medial temporal lobe.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting fields. Source data files have been provided for Figures 1, 2, 3, 4, 6,7

Article and author information

Author details

  1. Kayla M Ferko

    Brain and Mind Institute, University of Western Ontario, london, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4362-7295
  2. Anna Blumenthal

    Cervo Brain Research Center, University of Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Chris B Martin

    Department of Psychology, Florida State University, Tallahasse, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7014-4371
  4. Daria Proklova

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander N Minos

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Lisa M Saksida

    Robarts Research Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Timothy J Bussey

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Ali R Khan

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0760-8647
  9. Stefan Köhler

    Brain and Mind Institute, University of Western Ontario, london, Canada
    For correspondence
    stefank@uwo.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1905-6453

Funding

Canadian Institutes of Health Research (366062)

  • Ali R Khan

Canadian Institutes of Health Research (366062)

  • Stefan Köhler

Natural Sciences and Engineering Research Council of Canada

  • Kayla M Ferko

Ontario Trillium Foundation

  • Anna Blumenthal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human subjects: The study was approved by the Institutional Review Board at the University of Western Ontario (REB # 115283). Informed consent was obtained from each participant before the experiment, including consent to publish anonymized results.

Copyright

© 2022, Ferko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,329
    views
  • 204
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kayla M Ferko
  2. Anna Blumenthal
  3. Chris B Martin
  4. Daria Proklova
  5. Alexander N Minos
  6. Lisa M Saksida
  7. Timothy J Bussey
  8. Ali R Khan
  9. Stefan Köhler
(2022)
Activity in perirhinal and entorhinal cortex predicts perceived visual similarities among category exemplars with highest precision
eLife 11:e66884.
https://doi.org/10.7554/eLife.66884

Share this article

https://doi.org/10.7554/eLife.66884

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.