Erythropoietin directly remodels the clonal composition of murine hematopoietic multipotent progenitor cells
Abstract
The cytokine erythropoietin (EPO) is a potent inducer of erythrocyte development and one of the most prescribed biopharmaceuticals. The action of EPO on erythroid progenitor cells is well established, but its direct action on hematopoietic stem and progenitor cells (HSPCs) is still debated. Here, using cellular barcoding, we traced the differentiation of hundreds of single murine HSPCs, after ex vivo EPO-exposure and transplantation, in five different hematopoietic cell lineages, and observed the transient occurrence of high-output Myeloid-Erythroid-megaKaryocyte (MEK)-biased and Myeloid-B-cell-Dendritic cell (MBDC)-biased clones. Single-cell RNA sequencing (ScRNAseq) analysis of ex vivo EPO-exposed HSPCs revealed that EPO induced the upregulation of erythroid associated genes in a subset of HSPCs, overlapping with multipotent progenitor (MPP) 1 and MPP2. Transplantation of Barcoded EPO-exposed-MPP2 confirmed their enrichment in Myeloid-Erythroid-biased clones. Collectively, our data show that EPO does act directly on MPP independent of the niche, and modulates fate by remodeling the clonal composition of the MPP pool.
Data availability
all data and scripts are available on the github of the Perie labhttps://github.com/PerieTeam/Eisele-et-al.-
Article and author information
Author details
Funding
Atip Avenir CNRS
- Leïla Perié
Labex Celtisphybio (ANR-11-LABX-0038)
- Leïla Perié
Idex Paris-Science-Lettres (ANR-10-IDEX-0001-02 PSL)
- Leïla Perié
H2020 European Research Council (758170-Microbar)
- Leïla Perié
H2020 Marie Skłodowska-Curie Actions (666003)
- Almut S Eisele
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All procedures were approved by the responsible national ethics committee (APAFIS#10955-201708171446318 v1).
Copyright
© 2022, Eisele et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
Macrophages control intracellular pathogens like Salmonella by using two caspase enzymes at different times during infection.
-
- Immunology and Inflammation
- Microbiology and Infectious Disease
The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.