A Cas-BCAR3 co-regulatory circuit controls lamellipodia dynamics

  1. Elizabeth M Steenkiste
  2. Jason D Berndt
  3. Carissa Pilling
  4. Christopher Simpkins
  5. Jonathan A Cooper  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States

Abstract

Integrin adhesion complexes regulate cytoskeletal dynamics during cell migration. Adhesion activates phosphorylation of integrin-associated signaling proteins, including Cas (p130Cas, BCAR1), by Src-family kinases. Cas regulates leading-edge protrusion and migration in cooperation with its binding partner, BCAR3. However, it has been unclear how Cas and BCAR3 cooperate. Here, using normal epithelial cells, we find that BCAR3 localization to integrin adhesions requires Cas. In return, Cas phosphorylation, as well as lamellipodia dynamics and cell migration, requires BCAR3. These functions require the BCAR3 SH2 domain and a specific phosphorylation site, Tyr 117, that is also required for BCAR3 downregulation by the ubiquitin-proteasome system. These findings place BCAR3 in a co-regulatory positive-feedback circuit with Cas, with BCAR3 requiring Cas for localization and Cas requiring BCAR3 for activation and downstream signaling. The use of a single phosphorylation site in BCAR3 for activation and degradation ensures reliable negative feedback by the ubiquitin-proteasome system.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files, with the exception of the raw mass spectrometry data, which have been deposited in the Dryad Digital Repository.

The following data sets were generated

Article and author information

Author details

  1. Elizabeth M Steenkiste

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6452-2340
  2. Jason D Berndt

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  3. Carissa Pilling

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  4. Christopher Simpkins

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3174-6609
  5. Jonathan A Cooper

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    jcooper@fhcrc.org
    Competing interests
    Jonathan A Cooper, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8626-7827

Funding

National Institutes of Health (T32 GM007270)

  • Elizabeth M Steenkiste

National Institutes of Health (R01 GM109463)

  • Elizabeth M Steenkiste
  • Jason D Berndt
  • Carissa Pilling
  • Christopher Simpkins
  • Jonathan A Cooper

National Institutes of Health (P30 CA015704)

  • Elizabeth M Steenkiste
  • Jason D Berndt
  • Carissa Pilling
  • Christopher Simpkins
  • Jonathan A Cooper

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Margaret C Frame, University of Edinburgh, United Kingdom

Version history

  1. Received: January 30, 2021
  2. Accepted: June 21, 2021
  3. Accepted Manuscript published: June 25, 2021 (version 1)
  4. Version of Record published: July 8, 2021 (version 2)

Copyright

© 2021, Steenkiste et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 711
    views
  • 67
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth M Steenkiste
  2. Jason D Berndt
  3. Carissa Pilling
  4. Christopher Simpkins
  5. Jonathan A Cooper
(2021)
A Cas-BCAR3 co-regulatory circuit controls lamellipodia dynamics
eLife 10:e67078.
https://doi.org/10.7554/eLife.67078

Share this article

https://doi.org/10.7554/eLife.67078

Further reading

    1. Cancer Biology
    2. Cell Biology
    Dongyue Jiao, Huiru Sun ... Kun Gao
    Research Article

    Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.