1. Neuroscience
Download icon

Synaptic learning rules for sequence learning

  1. Eric Torsten Reifenstein  Is a corresponding author
  2. Ikhwan Bin Khalid
  3. Richard Kempter
  1. Institute of Theoretical Biology, Humboldt-Universität zu Berlin, Germany
Research Article
  • Cited 1
  • Views 1,232
  • Annotations
Cite this article as: eLife 2021;10:e67171 doi: 10.7554/eLife.67171

Abstract

Remembering the temporal order of a sequence of events is a task easily performed by humans in everyday life, but the underlying neuronal mechanisms are unclear. This problem is particularly intriguing as human behavior often proceeds on a time scale of seconds, which is in stark contrast to the much faster millisecond time-scale of neuronal processing in our brains. One long-held hypothesis in sequence learning suggests that a particular temporal fine-structure of neuronal activity - termed 'phase precession' - enables the compression of slow behavioral sequences down to the fast time scale of the induction of synaptic plasticity. Using mathematical analysis and computer simulations, we find that - for short enough synaptic learning windows - phase precession can improve temporal-order learning tremendously and that the asymmetric part of the synaptic learning window is essential for temporal-order learning. To test these predictions, we suggest experiments that selectively alter phase precession or the learning window and evaluate memory of temporal order.

Data availability

Code and data are now available at https://gitlab.com/e.reifenstein/synaptic-learning-rules-for-sequence-learning

Article and author information

Author details

  1. Eric Torsten Reifenstein

    Department of Biology, Institute of Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    eric@bccn-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6898-0178
  2. Ikhwan Bin Khalid

    Department of Biology, Institute of Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard Kempter

    Department of Biology, Institute of Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5344-2983

Funding

Bundesministerium für Bildung und Forschung (01GQ1705)

  • Richard Kempter

Deutsche Forschungsgemeinschaft (GRK 1589/2,SPP 1665,SFB 1315)

  • Richard Kempter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Vinck, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany

Publication history

  1. Received: February 3, 2021
  2. Accepted: March 31, 2021
  3. Accepted Manuscript published: April 16, 2021 (version 1)
  4. Version of Record published: June 3, 2021 (version 2)

Copyright

© 2021, Reifenstein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,232
    Page views
  • 199
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Casey Paquola et al.
    Tools and Resources Updated

    Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is ‘BigBrain’. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, ’BigBrainWarp’, that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.

    1. Neuroscience
    Gabriella R Sterne et al.
    Tools and Resources Updated

    Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult Drosophila melanogaster, comprising approximately one third of all SEZ neurons. We characterize the single-cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.