The solubility product extends the buffering concept to heterotypic biomolecular condensates.

  1. Aniruddha Chattaraj
  2. Michael L Blinov
  3. Leslie M Loew  Is a corresponding author
  1. University of Connecticut Health Center, United States
  2. University of Connecticut School of Medicine, United States

Abstract

Biomolecular condensates are formed by liquid-liquid phase separation (LLPS) of multivalent molecules. LLPS from a single ('homotypic') constituent is governed by buffering: above a threshold, free monomer concentration is clamped, with all added molecules entering the condensed phase. However, both experiment and theory demonstrate that buffering fails for the concentration dependence of multi-component ('heterotypic') LLPS. Using network-free stochastic modeling, we demonstrate that LLPS can be described by the solubility product constant (Ksp): the product of free monomer concentrations, accounting for the ideal stoichiometries governed by the valencies, displays a threshold above which additional monomers are funneled into large clusters; this reduces to simple buffering for homotypic systems. The Ksp regulates the composition of the dilute phase for a wide range of valencies and stoichiometries. The role of Ksp is further supported by coarse-grained spatial particle simulations. Thus, the solubility product offers a general formulation for the concentration dependence of LLPS.

Data availability

All the model files, Python scripts and a "Readme" description of all the contents are available in a public GitHub repository: https://github.com/achattaraj/Ksp_phase_separation.Also source data files are given for 7 figures that are part of the manuscript.

Article and author information

Author details

  1. Aniruddha Chattaraj

    Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7105-6621
  2. Michael L Blinov

    Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Leslie M Loew

    Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, United States
    For correspondence
    les@volt.uchc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1851-4646

Funding

National Institute of General Medical Sciences (R24 GM137787)

  • Leslie M Loew

National Institute of General Medical Sciences (R01 GM132859)

  • Leslie M Loew

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rohit V Pappu, Washington University in St Louis, United States

Version history

  1. Received: February 2, 2021
  2. Accepted: July 2, 2021
  3. Accepted Manuscript published: July 8, 2021 (version 1)
  4. Version of Record published: July 19, 2021 (version 2)

Copyright

© 2021, Chattaraj et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,679
    views
  • 353
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aniruddha Chattaraj
  2. Michael L Blinov
  3. Leslie M Loew
(2021)
The solubility product extends the buffering concept to heterotypic biomolecular condensates.
eLife 10:e67176.
https://doi.org/10.7554/eLife.67176

Share this article

https://doi.org/10.7554/eLife.67176

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Aaron JO Lewis, Frank Zhong ... Ramanujan S Hegde
    Research Article

    The protein translocon at the endoplasmic reticulum comprises the Sec61 translocation channel and numerous accessory factors that collectively facilitate the biogenesis of secretory and membrane proteins. Here, we leveraged recent advances in cryo-electron microscopy (cryo-EM) and structure prediction to derive insights into several novel configurations of the ribosome-translocon complex. We show how a transmembrane domain (TMD) in a looped configuration passes through the Sec61 lateral gate during membrane insertion; how a nascent chain can bind and constrain the conformation of ribosomal protein uL22; and how the translocon-associated protein (TRAP) complex can adjust its position during different stages of protein biogenesis. Most unexpectedly, we find that a large proportion of translocon complexes contains RAMP4 intercalated into Sec61’s lateral gate, widening Sec61’s central pore and contributing to its hydrophilic interior. These structures lead to mechanistic hypotheses for translocon function and highlight a remarkably plastic machinery whose conformations and composition adjust dynamically to its diverse range of substrates.

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.