The solubility product extends the buffering concept to heterotypic biomolecular condensates.

  1. Aniruddha Chattaraj
  2. Michael L Blinov
  3. Leslie M Loew  Is a corresponding author
  1. University of Connecticut Health Center, United States
  2. University of Connecticut School of Medicine, United States

Abstract

Biomolecular condensates are formed by liquid-liquid phase separation (LLPS) of multivalent molecules. LLPS from a single ('homotypic') constituent is governed by buffering: above a threshold, free monomer concentration is clamped, with all added molecules entering the condensed phase. However, both experiment and theory demonstrate that buffering fails for the concentration dependence of multi-component ('heterotypic') LLPS. Using network-free stochastic modeling, we demonstrate that LLPS can be described by the solubility product constant (Ksp): the product of free monomer concentrations, accounting for the ideal stoichiometries governed by the valencies, displays a threshold above which additional monomers are funneled into large clusters; this reduces to simple buffering for homotypic systems. The Ksp regulates the composition of the dilute phase for a wide range of valencies and stoichiometries. The role of Ksp is further supported by coarse-grained spatial particle simulations. Thus, the solubility product offers a general formulation for the concentration dependence of LLPS.

Data availability

All the model files, Python scripts and a "Readme" description of all the contents are available in a public GitHub repository: https://github.com/achattaraj/Ksp_phase_separation.Also source data files are given for 7 figures that are part of the manuscript.

Article and author information

Author details

  1. Aniruddha Chattaraj

    Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7105-6621
  2. Michael L Blinov

    Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Leslie M Loew

    Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, United States
    For correspondence
    les@volt.uchc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1851-4646

Funding

National Institute of General Medical Sciences (R24 GM137787)

  • Leslie M Loew

National Institute of General Medical Sciences (R01 GM132859)

  • Leslie M Loew

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Chattaraj et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,712
    views
  • 356
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aniruddha Chattaraj
  2. Michael L Blinov
  3. Leslie M Loew
(2021)
The solubility product extends the buffering concept to heterotypic biomolecular condensates.
eLife 10:e67176.
https://doi.org/10.7554/eLife.67176

Share this article

https://doi.org/10.7554/eLife.67176

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Cell Biology
    2. Neuroscience
    Georg Kislinger, Gunar Fabig ... Martina Schifferer
    Tools and Resources

    Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed ‘ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.