Local projections of layer Vb-to-Va are more prominent in lateral than in medial entorhinal cortex

  1. Shinya Ohara  Is a corresponding author
  2. Stefan Blankvoort
  3. Rajeevkumar Raveendran Nair
  4. Maximiliano J Nigro
  5. Eirik S Nilssen
  6. Cliff Kentros
  7. Menno P Witter  Is a corresponding author
  1. Tohoku University Graduate School of Life Sciences, Japan
  2. Norwegian University of Science and Technology, Norway

Abstract

The entorhinal cortex, in particular neurons in layer V, allegedly mediate transfer of information from the hippocampus to the neocortex, underlying long-term memory. Recently, this circuit has been shown to comprise a hippocampal output recipient layer Vb and a cortical projecting layer Va. With the use of in vitro electrophysiology in transgenic mice specific for layer Vb, we assessed the presence of the thus necessary connection from layer Vb-to-Va in the functionally distinct medial (MEC) and lateral (LEC) subdivisions; MEC, particularly its dorsal part, processes allocentric spatial information, whereas the corresponding part of LEC processes information representing elements of episodes. Using identical experimental approaches, we show that connections from layer Vb-to-Va neurons are stronger in dorsal LEC compared with dorsal MEC, suggesting different operating principles in these two regions. Although further in vivo experiments are needed, our findings imply a potential difference in how LEC and MEC mediate episodic systems-consolidation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. We provide source data for Figure 1, 2, 3, 4, 5, Figure1-figure supplement 2, and Figure4-figure supplement 2.

Article and author information

Author details

  1. Shinya Ohara

    Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
    For correspondence
    shinyaohara@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0681-5086
  2. Stefan Blankvoort

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3850-3829
  3. Rajeevkumar Raveendran Nair

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Maximiliano J Nigro

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Eirik S Nilssen

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6997-3343
  6. Cliff Kentros

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Menno P Witter

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    For correspondence
    menno.witter@ntnu.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0285-1637

Funding

Kavli Foundation (endowment)

  • Menno P Witter

Norwegian Research Council (infrastructure grant NORBRAIN,#197467)

  • Menno P Witter

Norwegian Research Council (the Centre of Excellence scheme - Centre for Neural Computation,#223262)

  • Menno P Witter

Norwegian Research Council (research grant,# 227769)

  • Menno P Witter

Ministry of Education, Culture, Sports, Science and Technology (KAKENHI,#19K06917)

  • Shinya Ohara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the local ethics committee and were in accordance with the European Communities Council Directive and the Norwegian Experiments on Animals Act (#17898, #22312).

Copyright

© 2021, Ohara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,720
    views
  • 356
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shinya Ohara
  2. Stefan Blankvoort
  3. Rajeevkumar Raveendran Nair
  4. Maximiliano J Nigro
  5. Eirik S Nilssen
  6. Cliff Kentros
  7. Menno P Witter
(2021)
Local projections of layer Vb-to-Va are more prominent in lateral than in medial entorhinal cortex
eLife 10:e67262.
https://doi.org/10.7554/eLife.67262

Share this article

https://doi.org/10.7554/eLife.67262