Local projections of layer Vb-to-Va are more prominent in lateral than in medial entorhinal cortex

  1. Shinya Ohara  Is a corresponding author
  2. Stefan Blankvoort
  3. Rajeevkumar Raveendran Nair
  4. Maximiliano J Nigro
  5. Eirik S Nilssen
  6. Cliff Kentros
  7. Menno P Witter  Is a corresponding author
  1. Tohoku University Graduate School of Life Sciences, Japan
  2. Norwegian University of Science and Technology, Norway

Abstract

The entorhinal cortex, in particular neurons in layer V, allegedly mediate transfer of information from the hippocampus to the neocortex, underlying long-term memory. Recently, this circuit has been shown to comprise a hippocampal output recipient layer Vb and a cortical projecting layer Va. With the use of in vitro electrophysiology in transgenic mice specific for layer Vb, we assessed the presence of the thus necessary connection from layer Vb-to-Va in the functionally distinct medial (MEC) and lateral (LEC) subdivisions; MEC, particularly its dorsal part, processes allocentric spatial information, whereas the corresponding part of LEC processes information representing elements of episodes. Using identical experimental approaches, we show that connections from layer Vb-to-Va neurons are stronger in dorsal LEC compared with dorsal MEC, suggesting different operating principles in these two regions. Although further in vivo experiments are needed, our findings imply a potential difference in how LEC and MEC mediate episodic systems-consolidation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. We provide source data for Figure 1, 2, 3, 4, 5, Figure1-figure supplement 2, and Figure4-figure supplement 2.

Article and author information

Author details

  1. Shinya Ohara

    Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
    For correspondence
    shinyaohara@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0681-5086
  2. Stefan Blankvoort

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3850-3829
  3. Rajeevkumar Raveendran Nair

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Maximiliano J Nigro

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Eirik S Nilssen

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6997-3343
  6. Cliff Kentros

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Menno P Witter

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    For correspondence
    menno.witter@ntnu.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0285-1637

Funding

Kavli Foundation (endowment)

  • Menno P Witter

Norwegian Research Council (infrastructure grant NORBRAIN,#197467)

  • Menno P Witter

Norwegian Research Council (the Centre of Excellence scheme - Centre for Neural Computation,#223262)

  • Menno P Witter

Norwegian Research Council (research grant,# 227769)

  • Menno P Witter

Ministry of Education, Culture, Sports, Science and Technology (KAKENHI,#19K06917)

  • Shinya Ohara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Katalin Toth, University of Ottawa, Canada

Ethics

Animal experimentation: All experiments were approved by the local ethics committee and were in accordance with the European Communities Council Directive and the Norwegian Experiments on Animals Act (#17898, #22312).

Version history

  1. Received: February 5, 2021
  2. Accepted: March 25, 2021
  3. Accepted Manuscript published: March 26, 2021 (version 1)
  4. Version of Record published: April 16, 2021 (version 2)

Copyright

© 2021, Ohara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,352
    views
  • 305
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shinya Ohara
  2. Stefan Blankvoort
  3. Rajeevkumar Raveendran Nair
  4. Maximiliano J Nigro
  5. Eirik S Nilssen
  6. Cliff Kentros
  7. Menno P Witter
(2021)
Local projections of layer Vb-to-Va are more prominent in lateral than in medial entorhinal cortex
eLife 10:e67262.
https://doi.org/10.7554/eLife.67262

Share this article

https://doi.org/10.7554/eLife.67262

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.