Local projections of layer Vb-to-Va are more prominent in lateral than in medial entorhinal cortex

  1. Shinya Ohara  Is a corresponding author
  2. Stefan Blankvoort
  3. Rajeevkumar Raveendran Nair
  4. Maximiliano J Nigro
  5. Eirik S Nilssen
  6. Cliff Kentros
  7. Menno P Witter  Is a corresponding author
  1. Tohoku University Graduate School of Life Sciences, Japan
  2. Norwegian University of Science and Technology, Norway

Abstract

The entorhinal cortex, in particular neurons in layer V, allegedly mediate transfer of information from the hippocampus to the neocortex, underlying long-term memory. Recently, this circuit has been shown to comprise a hippocampal output recipient layer Vb and a cortical projecting layer Va. With the use of in vitro electrophysiology in transgenic mice specific for layer Vb, we assessed the presence of the thus necessary connection from layer Vb-to-Va in the functionally distinct medial (MEC) and lateral (LEC) subdivisions; MEC, particularly its dorsal part, processes allocentric spatial information, whereas the corresponding part of LEC processes information representing elements of episodes. Using identical experimental approaches, we show that connections from layer Vb-to-Va neurons are stronger in dorsal LEC compared with dorsal MEC, suggesting different operating principles in these two regions. Although further in vivo experiments are needed, our findings imply a potential difference in how LEC and MEC mediate episodic systems-consolidation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. We provide source data for Figure 1, 2, 3, 4, 5, Figure1-figure supplement 2, and Figure4-figure supplement 2.

Article and author information

Author details

  1. Shinya Ohara

    Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
    For correspondence
    shinyaohara@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0681-5086
  2. Stefan Blankvoort

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3850-3829
  3. Rajeevkumar Raveendran Nair

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Maximiliano J Nigro

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Eirik S Nilssen

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6997-3343
  6. Cliff Kentros

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Menno P Witter

    Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
    For correspondence
    menno.witter@ntnu.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0285-1637

Funding

Kavli Foundation (endowment)

  • Menno P Witter

Norwegian Research Council (infrastructure grant NORBRAIN,#197467)

  • Menno P Witter

Norwegian Research Council (the Centre of Excellence scheme - Centre for Neural Computation,#223262)

  • Menno P Witter

Norwegian Research Council (research grant,# 227769)

  • Menno P Witter

Ministry of Education, Culture, Sports, Science and Technology (KAKENHI,#19K06917)

  • Shinya Ohara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Katalin Toth, University of Ottawa, Canada

Ethics

Animal experimentation: All experiments were approved by the local ethics committee and were in accordance with the European Communities Council Directive and the Norwegian Experiments on Animals Act (#17898, #22312).

Version history

  1. Received: February 5, 2021
  2. Accepted: March 25, 2021
  3. Accepted Manuscript published: March 26, 2021 (version 1)
  4. Version of Record published: April 16, 2021 (version 2)

Copyright

© 2021, Ohara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,326
    views
  • 303
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shinya Ohara
  2. Stefan Blankvoort
  3. Rajeevkumar Raveendran Nair
  4. Maximiliano J Nigro
  5. Eirik S Nilssen
  6. Cliff Kentros
  7. Menno P Witter
(2021)
Local projections of layer Vb-to-Va are more prominent in lateral than in medial entorhinal cortex
eLife 10:e67262.
https://doi.org/10.7554/eLife.67262

Share this article

https://doi.org/10.7554/eLife.67262

Further reading

    1. Developmental Biology
    2. Neuroscience
    Jonathan AC Menzies, André Maia Chagas ... Claudio R Alonso
    Research Article

    Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene – which we term Movement Modulator (Motor) – as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.

    1. Neuroscience
    Emma Keppler, Susanna Molas
    Insight

    A social memory pathway connecting the ventral hippocampus, the lateral septum and the ventral tegmental area helps to regulate how mice react to unknown individuals.